
Technische Universität Ilmenau
Fakultät für Informatik und Automatisierung

Institut für Praktische Informatik und Medieninformatik
Fachgebiet Datenbanken und Informationssysteme

Diplomarbeit

CouPé: Ein Query Processor für UniStore
CouPé: A Query Processor for UniStore

Diplomarbeit zur Erlangung des akademischen Grades Diplominformatiker,
vorgelegt der

Fakultät für Informatik und Automatisierung der
Technischen Universität Ilmenau

von:

Martin Richtarsky
Matr.-Nr.: 26356

Verantwortlicher Professor: Prof. Dr.-Ing. habil. Kai-Uwe Sattler
Hochschulbetreuer: Dipl.-Inf. Marcel Karnstedt

Datum: Ilmenau, 13. März 2007
Inventarisierungsnummer: 2006-12-13/145/IN97/2254

Abstract

Due to the “information revolution”, an ever-increasing volume of data needs to be pro-
cessed. Traditional databases often are not up to these tasks, as they do not scale
well, are expensive and require administration. Peer-to-peer (P2P) databases promise
database-like querying functionality on top of massively scalable P2P systems. Par-
ticipants of such systems contribute resources and queries are processed without any
central coordination by cooperation of the peers. This thesis implements a query pro-
cessor using these concepts on top of P-Grid, a DHT (Distributed Hash Table) P2P net-
work. Building on a simple implementation, various features are added to improve per-
formance. Different types of operators are created which make use of these features
and the available indexes to provide alternative ways of evaluating logical operators. In
addition to scalability, an emphasis is placed on fault tolerance, similarity and schema
operations. The system is evaluated on PlanetLab, a large-scale research network. The
feasibility of the concept is demonstrated and detailed results w.r.t. the available oper-
ators are presented. Possible future operators and other improvements of the system
are discussed.

3

Contents

1 Introduction 8
1.1 Motivation . 8
1.2 Objective . 9
1.3 Outline of Thesis . 10

2 Introduction to P2P Networks and P-Grid 11
2.1 P2P Networks . 11

2.1.1 Broadcast Networks . 13
2.1.2 DHT Networks . 13
2.1.3 Examples . 13

2.2 The P-Grid Network . 14

3 Related Work: DHT Query Processing/Databases 18
3.1 PIER . 18
3.2 “Towards a Unifying Framework for Complex Query Processing over Struc-

tured Peer-to-Peer Data Networks” . 20
3.3 RDFPeers . 20
3.4 “A Query Processor for CAN-based P2P Systems” 21
3.5 “Similarity Queries in P-Grid-based P2P Networks” 22

4 Foundations 23
4.1 Storing Structured Data in a DHT . 23

4.1.1 Exact-match Indexes . 24
4.1.2 Similarity Indexes . 25
4.1.3 Remarks . 29

4.2 Querying Structured Triple Data . 30
4.2.1 Vertical Query Language . 30
4.2.2 VQL Algebra . 32
4.2.3 Example: Logical Plan and Parameter Representation 35

5 CouPé: A Query Processor for UniStore 38
5.1 Challenges . 38
5.2 Overview of Query Processing in UniStore 40

5

Contents

5.3 Query Planners . 41

6 Execution Engine 43
6.1 Execution Strategies . 43
6.2 MQPs in CouPé . 44
6.3 Serial M2QP Execution . 46

6.3.1 Forward Processing . 48
6.4 Parallel M2QP Execution . 50

6.4.1 Prefix Queries . 50
6.4.2 Plan Cloning . 55
6.4.3 Parallel Execution of Binary Operators 57

6.5 Query Status and Completion . 58
6.5.1 Serial Strategy . 59
6.5.2 Parallel Strategy . 60

6.6 Summary and Outlook . 69

7 Operators 71
7.1 Overview . 71
7.2 Local Operators . 72
7.3 DHT Operators . 73

7.3.1 Serial Operators . 73
7.3.2 Parallel Operators . 77

7.4 Query Planner Operator Mappings . 81
7.5 Building Custom Query Plans . 82
7.6 Future Work . 84

7.6.1 Grouping/Aggregation . 84
7.6.2 Other New Operators . 86

8 Implementation 89
8.1 Implementation Details . 89
8.2 Query Planner . 89
8.3 Operators . 91
8.4 Execution Engine . 93
8.5 P-Grid Integration . 96
8.6 Implementation Class and Variable Names 98

9 Evaluation 99
9.1 Introduction . 99

9.1.1 PlanetLab . 99
9.2 Test Setup . 100
9.3 Statistics . 101

6

Contents

9.4 Tests . 103
9.4.1 P-Grid Network . 103
9.4.2 Extraction . 103
9.4.3 Materialization . 104
9.4.4 Similarity Selection . 111
9.4.5 Similarity Join . 115
9.4.6 Schema Similarity Queries . 119

9.5 Summary . 120

10 Conclusions and Outlook 121
10.1 Conclusions . 121
10.2 Future Research . 122

Bibliography 124

Theses 128

Affirmation/Eidesstattliche Erklärung 130

7

1 Introduction

1.1 Motivation

The “information revolution” has led to a dramatic increase in the volume of data that
needs to be processed by databases. Search engines like Google own large data
centers with vast amounts of processing and storage capacity to handle the challenges
of search. Data mining has become essential to business. In this context, two key
problems arise: traditional databases, even distributed databases, often rely on central
components which prohibit scaling beyond a certain point and can often not be used in
such scenarios. Also, initial investments and operating costs for large-scale processing
facilities are huge – the achievable computing power is strictly limited by the available
budget.

The peer-to-peer (P2P) approach shows a way out of this dilemma. In the 1990s, In-
ternet users banded together as equals – peers – in the Napster network to share
music. Due to the large number of participants, many songs were available for down-
load. The system itself was not strictly P2P, which led to its eventual demise for legal
reasons. Nowadays, BitTorrent [Bit07] and IP-TV applications like SopCast [Sop07]
follow a more strict P2P approach to achieve the same purpose: using “power in num-
bers” to do things a single instance is hardly capable of, in this case the provision of
vast bandwidth for data distribution. Existing infrastructure can be used and central
components are only required for bootstrapping. While these systems are often used
for illegal purposes, this should not taint their potential for legitimate applications.

Applying these success stories to the database world would solve the problems outlined
above and provide a generic, enabling technology for public data management. “Public”
means that the data is provided and accessed by many parties, for example, multiple
research institutions or individuals. Distributed Hash Tables (DHTs) have been heavily
researched in the past years. They use the P2P paradigm, do not have central com-
ponents and provide scalable distributed storage and localization of data with simple
primitives. Extending them to offer rich database-like query semantics is a promising
approach to arrive at a massively scalable data management system. Concrete ap-

8

1 Introduction

plications are specialized search engines, directory services and all scenarios where
many users need to publish and access data and a central solution is not feasible either
for cost or scalability reasons. For example, participating research institutions could
install such a system in computer labs and contribute idle resources to form a powerful
distributed system for indexing and querying of research data.

UniStore [KSR+07] is a project at Technische Universität Ilmenau to create such a data
management system. An important part of it is the query processor, which accepts
requests posed in a query language and processes the results. The concepts, design,
implementation and evaluation of key parts of it are the focus of this thesis.

1.2 Objective

The main objectives of this thesis are:

• The creation of a query processor for a dynamic P2P environment, integrating
existing components.

• Deployment and evaluation of the processor on the Internet to determine the fea-
sibility, scalability and properties of the system.

The processor will be built on top of P-Grid, a DHT, described in detail in sec. 2.2.
Challenges like dynamically joining and leaving hosts and also the failure of peers are
already addressed by this system. The query processor must be highly scalable and
efficient. Starting from a query posed in the Vertical Query Language (VQL) for which
a parser already exists, the required data must be located in the network, processed
with the correct operators and the results delivered to the initiating peer. Missing data
must be tolerated, as no central instance can control data quality. The processing load
should be balanced if possible. Therefore, good processing strategies must be found.
There are also many ways to implement a particular operator (for example, a join), so
multiple versions should be available for choice by an optimizer1. In search engines
or directory services fuzzy search is an important feature. Therefore, similarity queries
should be supported. As a public data management system stores data from many
sources, heterogenous schemata exist. To efficiently deal with them, operators should
work on schema level.

1optimization itself is out of the scope of this work

9

1 Introduction

Strict ACID guarantees as known from traditional databases are not required. Imple-
menting them would require complicated protocols or central components which are
not suited to the P2P approach and not required by most of the applications the system
targets.

The evaluation must demonstrate the feasibility of the concept of a P2P query proces-
sor. The performance of the processing strategies and operator implementations has
to be examined and situations when they perform best identified.

1.3 Outline of Thesis

Chapter 2 introduces P2P networks and shows two basic approaches to data local-
ization. P-Grid, the network used for UniStore, is examined in detail. State of the
Art-approaches to bring query processing to DHT networks are reviewed in chapter 3.
Key parts of UniStore on which this work is based are discussed in chapter 4. This
includes techniques for storing structured data in P-Grid and the user interface to the
query processor, the Vertical Query Language. The next chapter takes a detailed look
at the challenges faced by a query processor in a P2P system, presents solution and
a design for it. Chapter 6 discusses the key component of this design, the execution
engine, including execution strategies and ways to determine when a query has been
completed. The operators implemented as part of the processor are described in the
following chapter and possible future operators are discussed. The implementation is
documented in chapter 8. Another key part of this thesis is the evaluation of the system
on PlanetLab (chapter 9). Conclusions as well as ideas for future research can be found
in the final chapter.

10

2 Introduction to P2P Networks and P-Grid

The P2P paradigm is key to this work. This section gives an overview of the most
important concepts and properties. Two contrasting data localization techniques in P2P
are presented and selected designs are categorized. Lastly, the P-Grid network, on top
of which the query processor will be implemented, is discussed in detail.

2.1 P2P Networks

Client-server architectures provide only limited scalability, flexibility and have single
points of failure (the server). Another approach which is often a better fit is the peer-to-
peer (P2P) paradigm. As the name implies, all the participating peers are “equal”. In
the purest form, no central components exist. Key properties are [SHS05]:

• Each peer can act as a server and a client, providing access to resources or
accessing resources on other peers.

• No central coordination or central storage exists.

• Each peer only has limited knowledge about the system, no global knowledge is
available.

• The global behaviour of the system emerges as the sum of all local interactions
between peers.

• A fully connected topology is not required, it is also possible to establish links
between peers by routing through other peers.

Because they establish a logical link structure between peers which need not depend
on the underlying network and route messages based on these logical connections, but
by means of the base network, P2P systems are often called overlay networks.

11

2 Introduction to P2P Networks and P-Grid

While the P2P approach has been known and employed for quite some time1, it took
file-sharing applications like Napster or Gnutella to make it popular. A large user-base
showcased the potential of this architecture and sparked interest in academia. Weak-
nesses in early designs were identified and fixed, leading to many interesting and pow-
erful P2P applications. All kinds of resources can be harnessed:

Processing power Processing load can be distributed among peers (computing grids).

Storage Large-scale distributed storage can be used for demanding scientific applica-
tions or public data management, like the semantic web.

Bandwidth Unused bandwidth can be utilized to transport data to other peers in the
network. Examples are BitTorrent [Bit07] and IP-TV applications like SopCast
[Sop07].

Information sources Sensors or other information sources can form P2P networks.

P2P can be a fair way to share costs between all users. Consider a scenario where
a not-for-profit organization provides a documentation for download. Instead of having
to pay for the downstream bandwidth themselves, they can make use of the download-
ers’ unused upstream bandwidth by offering the file via a BitTorrent tracker. Distributing
CPU-intensive calculations among many peers is motivated by the fact that many sep-
arate computers with moderate CPU power are cheaper than one “super computer”.
In the context of this work, the P2P concept is attractive for storage and CPU load
distribution.

Existing P2P designs can be classified in many ways. One important aspect is how
data items in the network are located: query messages must be routed to those peers
responsible for the requested items in an efficient way. P2P systems can be classified
by the type and amount of “structure” in the form of routing indexes they employ for
this task. One extreme are broadcast-based approaches without any indexes, the other
are DHTs which guarantee that all matching data available in the network is returned.
They also provide theoretical upper bounds on the number of hops required. These two
extremes will be illustrated in the next two sections. Most P2P systems fall somewhere
inbetween them.

1examples are the ARPANET and the feed exchanges between USENET servers

12

2 Introduction to P2P Networks and P-Grid

2.1.1 Broadcast Networks

Query messages to locate data objects are flooded through the network. At each peer
they are processed and local results returned to the initiator. To prevent overloading
of the network, a maximum hop count limits the message to a “horizon”. Therefore,
not all results might be returned – which is a problem for rare items that are available
at a few peers only. The advantage is that the query semantics are not limited in any
way because routing is query-independent in these broadcast-systems. This allows for
arbitrarily complex queries.

2.1.2 DHT Networks

Routing of messages is based on some kind of index: DHTs store data items addressed
by a key like a hash table, but distributed among many peers. The key space of the hash
function is partitioned and each peer is responsible for one slice. If the current peer is
not responsible for the request, a greedy routing strategy similar to IP routing is used to
forward the message towards the destination with a minimal number of hops. For most
DHT designs it is possible to derive theoretical bounds for the number of hops (usually
O(logN) for a network with N peers or key space partitions) and the size of the routing
tables.

2.1.3 Examples

The original Gnutella design is a broadcast P2P network. Scalability issues caused
by flooding traffic were addressed by only flooding to a certain number of neighbor-
ing peers, a unique ID to eliminate already-seen query messages and the time-to-live
flooding “horizon”. The FastTrack technology, used by KaZaA and Grokster, and later
Gnutella designs improved on these ideas by introducing “super peers”: it was observed
that certain peers were bottlenecks (for example, because of slow dial-up connections),
while others had much more resources to contribute to the network. These powerful
nodes become super peers and communicate with other super peers just like in the
original Gnutella design – they are responsible for query processing. “Normal” peers
register their resources with the super peers and use them as proxy for query process-
ing, instead of talking to other peers themselves. Schema-based P2P databases like
Edutella [NWQ+02] enhance their local knowledge with routing indexes that indicate
what data is reachable through which neighboring peers. Influential DHT designs are

13

2 Introduction to P2P Networks and P-Grid

Chord [SMK+01], CAN [RFH+01] and P-Grid [Abe01]. These proposals have much in
common: they share the same hashtable API (put() and get() operations), theoret-
ical bounds for the number of hops and the size of the routing tables, and protocols
for joining and leaving the network. Main differences are the topology used, the way
the routing tables are set up (i.e., which peers are known to the current peer), and the
specific theoretical bounds [SHS05].

2.2 The P-Grid Network

The P2P network used in this work is P-Grid [Abe01], a DHT. Binary keys reference data
items in the hash table. The keys are created from application keys2 by user-defined
hash functions. At the heart of P-Grid is a virtual binary search tree with the peers
located at the leaves, depicted in fig. 2.1. A peer’s path is the binary number created by
walking from the root of the tree to the peer, appending 0 for each left subtree and 1 for
each right subtree visited. The peer is responsible for all binary keys starting with this
prefix and manages the associated values in its data store. Multiple peers can exist for
one path to provide replication. Each peer has a routing table for forwarding messages
it is not responsible for: for each prefix p of the peer’s path (“level”) it contains references
to peers that have the same p, but with the last bit inverted. In fig. 2.1 the table is shown
with one entry for each level at the bottom of the peers. For example, A is responsible
for all keys starting with 00. To handle all possible keys, it only needs to know where
to send queries for keys starting with 1 and 01. At routing time, a greedy algorithm is
used to find the level with the longest common prefix in relation to the destination path
and a random host is selected from it. The query in fig. 2.1 further illustrates this: an
application on peer F starts a request for key “as” which is hashed to the P-Grid key
100 and sent to the DHT on the peer for processing. Peer F is not responsible for the
prefix, so it consults its routing table and determines the level with the longest common
prefix (1). It forwards the message to E (instead of E, C or D could have been listed
here as well) which determines D as the next best match. D stores the requested key,
since its path is a prefix of 100, and answers the request to F which forwards it to the
application.

The virtual search tree is created and maintained automatically by P-Grid so that each
peer is responsible for roughly the same number of keys. This happens with a random
walk strategy: peers contact eachother randomly and exchange information about the
data stored. Data items can be transfered to the partner for better load balancing and

2for example, an ID

14

2 Introduction to P2P Networks and P-Grid

Path: 00

1 : C

01: B

A

Path: 00

1 : E

01: B

F

Path: 01

1 : D

00: F

B

Path: 10

0 : B

11: E

C

Path: 10

0 : F

11: E

D

Path: 11

0 : F

10: D

E

00 01 10 11

0 1

(1) query(F, 100)

(2) query(E, 100)

(3) query(D,

100)

get(’as’)

h(’as’) = 100

Application Layer

P-Grid Layer

(4) Results

(5) Results

Figure 2.1: P-Grid virtual tree and routing of a message (adapted from [DHJ+05])

15

2 Introduction to P2P Networks and P-Grid

the paths and routing tables are updated accordingly. Dedicated bootstrapping peers
provide addresses of established peers to peers just joining the grid [ADHS05b].

This process ensures storage load balancing for nearly any data distribution. In particu-
lar it makes it possible to use order-preserving hashing, which maps similar application
keys to similar P-Grid binary keys, in contrast to randomized hashing. Thus, similar keys
are mapped to the same or a neighboring3 peer and ranges of keys can be accessed
efficiently. This scheme is usually not feasible for normal DHTs as it causes storage
load imbalance: for skewed data distributions, relatively few peers can become respon-
sible for a majority of the keys in the network. P-Grid adjusts the paths of each peer to
alleviate this problem [ADHS05b]. One issue remains – identical application keys will
still be mapped to identical binary keys and therefore stored on the same peer. When
extreme data distributions are to be expected, it might be useful to append a random
value to each key, enabling P-Grid to handle this case as well. The original data can
still be extracted with a range query on the key, which will be discussed next.

Range queries extract all data stored in the range between two binary P-Grid keys, like
101000-1010104. P-Grid routes the request to all peers responsible using an efficient,
parallel shower algorithm [DHJ+05]. In the context of this work, range queries are
mainly used for accessing all keys with a common prefix, so the term “prefix queries”
will also be used. One application of such a query has been mentioned above. Others
become possible by usage of a prefix-preserving hash function h for key generation.
For two application keys a, b and the is-prefix-of relationship ⊆, h has the following
property:

a ⊆ b ⇒ h(a) ⊆ h(b)

This way the prefix relationship between two keys remains after hashing to P-Grid’s key
space. Therefore, a prefix query can be used to query for prefixes of application keys.
Prefix string searches and integer range queries can be implemented on top of this,
other applications will be discussed in sec. 4.1.1 and sec. 6.4.1.

In addition to the multiple references stored in the routing tables a configurable number
of replicas for each peer provide fault tolerance in the face of peer and network failures,
as well as load balancing. In fig. 2.1, peers A, F and C, D are responsible for the same
path. Epidemic algorithms ensure replica consistency.

3which can be defined by the proximity of the peers at the leaf level of the tree
4a lexicographic-like ordering is assumed

16

2 Introduction to P2P Networks and P-Grid

Available data is guaranteed to be found in O(logN) time for N distinct paths (“key
space partitions”) in the grid (direct key lookup) [DHJ+05]. Routing tables can require
up to O(N) space, but only for heavily skewed data distributions, so this poses no
problem in practice [ADHS05a].

With these properties, P-Grid provides a good basis for a P2P storage system and an
accompanying distributed query processor. In contrast to broadcast-based systems
data will always be found when there are no peer failures. These can be alleviated by
replication, which also provides query load balancing for free. The known logarithmic
bounds make it possible to build a cost model to be used by a query planner. Further-
more, they guarantee that the system will scale in the number of peers. Finally, P-Grid
already offers efficient range queries, while other DHT designs must be enhanced to
handle them.

More information about P-Grid, including papers on a wide range of topics, can be found
on the project website [Con07]. The foundations for P-Grid were presented in [Abe01].
Good overviews of the current system are given in [ACMD+03] and [ADHS05a] (Ger-
man). Range queries and their costs are discussed in [DHJ+05]. The Java implemen-
tation of P-Grid can be obtained from the authors on request.

17

3 Related Work: DHT Query
Processing/Databases

DHT query processing can be seen as the next logical step from shared-nothing query
processing, which was quite successful (for a good overview of these systems, see
[DG92]). The big difference is that no central knowledge or components are used: no
global schema must be maintained and transaction monitors or central query proces-
sors do not exist. While this has some drawbacks – it is harder to process queries
optimally, no ACID guarantees can be provided – it allows for much greater scalabil-
ity. In the systems presented here, a distributed data structure, the DHT, is used to
spread storage and processing load across many peers and to efficiently route mes-
sages between them. Upper bounds for routing hops or routing table size are known
for the underlying DHT designs, thus making it possible to assess performance before
deployment.

Auxiliary Research Plenty of research has focused on solving some of the specific
problems encountered when trying to enhance DHTs with complex querying capabil-
ities. There are many interesting proposals for range queries, aggregation, substring
search and other problems. These will not be discussed here as query processing
in general is the focus of this chapter and work. A comprehensive overview of such
research is available in [RM06].

3.1 PIER

PIER [HCH+05, HHL+03] is an extensive effort to build a large-scale DHT query pro-
cessing engine. It is DHT-agnostic and has been used with CAN [RFH+01], Chord and
Bamboo [RGRK04]. Tuples are annotated by table name, column names and column
types. Primary indexes are created by inserting all tuples into the DHT with a parti-
tion attribute serving as the key. PIER supports range queries by means of a Prefix

18

3 Related Work: DHT Query Processing/Databases

Hash Tree [RHS03] and broadcasting of queries to all nodes with a virtual tree of all
peers. Tuples are only stored in the primary index. Secondary indexes can be created
by referencing the tuple ID. PIER does not offer persistent storage, it uses a soft-state
approach: publishers must periodically refresh their data to keep it from expiring. This
acts as a garbage collector, but places additional load on the system.

Query plans consist of multiple operator graphs (opgraphs) which represent locally con-
nected dataflow operators. These opgraphs are distributed to the appropriate peers and
exchange data using the DHT as storage (“DHT rehashing”). Implemented operators
include selection, projection, join, group-by, tee, union, duplicate elimination and Ed-
dies [AH00]. Supported join algorithms are symmetric hash join and fetch matches join.
Symmetric semi-join and bloom filter join rewriting strategies are used to reduce band-
width consumption. One example of PIER’s distributed operators is the (equi) hash join
which uses the DHT as the hash table: all tuples from both tables are republished in
the DHT with the values of the join columns as keys. This way, tuples with identical val-
ues arrive at the same peer which computes the subjoin locally and forwards the result.
This makes it possible to process large joins. Furthermore, hierarchical algorithms for
aggregations and joins are presented which operate in a similar way but use the vir-
tual tree mentioned above. Snapshot and continuous queries are supported. Timeouts
define the end of processing.

PIER has been evaluated thoroughly in simulation and also in the “real world”. In
[LHH+04] the authors describe PIERSearch, an extension for the Gnutella network.
As keyword queries for rare items often fail to provide results, they augmented the stan-
dard Gnutella flooding-based querying approach with a DHT-based index which they
queried for rare items. This hybrid system improved performance and recall. The num-
ber of Gnutella queries without result were reduced by 18%.

In contrast to PIER, rehashing will not be used in this work because it introduces de-
lays and is not ideal for interactive applications. Instead, P-Grid’s prefix queries are
used among other techniques to efficiently parallelize queries and distribute processing
load.

19

3 Related Work: DHT Query Processing/Databases

3.2 “Towards a Unifying Framework for Complex Query
Processing over Structured Peer-to-Peer Data Networks”

This paper [TP03] presents a Chord-based [SMK+01] query processing framework.
Each tuple is indexed by hashing its distinct identifier1 and, for each attribute, by ap-
plying an order-preserving hash function for efficient range queries. To alleviate the
overhead of these k + 1 replicas, the authors suggest storing references to the tuples
for the attribute indexes, similar to PIER. The used hash function might lead to imbal-
anced storage loads for skewed data distributions. As pointed out in sec. 2.2, P-Grid
eliminates this problem.

Rudimentary and non-rudimentary queries are categorized according to the operators,
number of attributes and relations involved. These include selection (equality), range
queries, joins and aggregation/grouping. Algorithms for solving the rudimentary queries
are presented. They provide the basis for processing the non-rudimentary queries.
Only integers are supported as data type. For range queries and joins, the authors
propose range guards. For each attribute frequently involved in range queries or joins,
a number of range guard-peers are defined which also store the tuples in an order-
preserving way like the attribute indexes, but distributed over fewer peers. Adjacent
range guards are linked to each other. For l range guards and N total peers, the worst-
case number of routing hops decreases from O(N) to O(l). Another optimization is
made for multi-attribute selection queries by hashing tuples for all attributes involved in
the selection simultaneously. This makes it possible to find matches with a single key
lookup.

In contrast to this work, queries on schema level and similarity queries are not consid-
ered and no evaluation is given.

3.3 RDFPeers

RDFPeers [CF04] uses a triple-based data model comparable to the one used in this
work (see sec. 4.1) to store RDF data. Indexes exist for each component of an RDF
triple (subject, predicate, object). String data is hashed with SHA-1, numeric attributes
with a locality-preserving hash function. The underlaying network used is MAAN [CFCS04],

1for example, the primary key

20

3 Related Work: DHT Query Processing/Databases

an extension of Chord, which can also answer multi-attribute and range queries. A na-
tive query resolver utilizes the MAAN to provide results. Query modules can be used
to map more formal query languages to these native queries and the authors plan to
implement RDQL [MSR02] in this fashion. To show that this is feasible, they explain
how to process specific RDQL queries. Supported native queries are:

• “atomic”, exact-match queries that specify a value for zero, one, two or all three
components of the RDF triple

• disjunctive queries for specifying sets of values to match

• range queries for numeric objects

• conjunctive queries for a common subject variable

Theoretical upper bounds for these queries as well as simulation results are provided.
Load-balancing problems are identified and a solution for minimizing storage imbal-
ance is presented. It is possible to replicate data by an adjustable factor to enhance
resilience.

No provisions are made for supporting minimum/maximum or similarity queries, which
will be covered in this thesis.

3.4 “A Query Processor for CAN-based P2P Systems”

[Rös05] discusses query processing of relational data in CAN [RFH+01]. Two different
data distribution strategies are evaluated: the first stores a complete relation on a single
peer (only the relation ID is hashed), the second distributes data along a Z curve in the
CAN overlay network. A locality-preserving hash function is used for this. In combina-
tion with an extension made to CAN, which makes it possible to send messages to all
peers responsible for data in a given interval on the Z curve, this enables efficient range
queries.

The following operators were implemented:

• Projection

• Selection (equality, range queries on numeric data, edit distance on string data)

• two Join variants: Symmetric Hash Join, Ship Where Needed-Join

21

3 Related Work: DHT Query Processing/Databases

• two Grouping/Aggregation variants: a central operator that delegates processing
to a single peer and a parallel implementation that rehashes the tuples to the CAN

Similar to the MQP concept [PM02b] (also see sec. 6.1), query plans are routed through
the network and data is inserted in the plan during processing to be consumed by other
plan operators. Plans are processed in post-order, with the exception of the symmetric
hash join implementation, where the child operators are started in parallel. The system
is evaluated with a CAN simulator and detailed results are provided for different op-
erator implementations, the two data distribution strategies and under load. However,
no “real world” tests were performed. Schema-level operations, minimum/maximum or
similarity joins are not supported. This work implements such complex operators and
uses PlanetLab [CCR+03] for “real world” tests.

3.5 “Similarity Queries in P-Grid-based P2P Networks”

Query processing in a P-Grid network is researched in [Wie06]. Some of the results pre-
sented lay the foundations for this thesis. Different storage schemes were considered
and a triple-based model was chosen. All triples are indexed on the attribute in con-
junction with the value and on the object ID. Q-gram indexes enable similarity queries
on strings. A detailed description of this scheme is provided in sec. 4.1.2. Supported
operators include:

• Selection (equality, similarity)

• Join (equality, similarity)

• Minimum/Maximum (for integer data)

• Nearest Neighbor

• Substring Search

Different versions of these operations were implemented and compared on PlanetLab
internet nodes. The goal of this thesis was to simulate and test several strategies in
order to solve some problems on the way to complex query processing. As such, it
does not support query plans nor flexible combinations of operators in general, which
is the focus of this thesis.

22

4 Foundations

This chapter documents foundations for the query processor. The first section deals
with the partitioning of structured data for distributed storage and efficient access in
a DHT. Indexes for exact-match and similarity access are presented. In the second
section, querying of such data is discussed. To execute a query, the fragmented data
must be fetched from the indexes, recomposed and processed. An algebra is presented
which defines the logical operators to accomplish this. Lastly, a query language using
this algebra is introduced.

4.1 Storing Structured Data in a DHT

A key problem on the way to a massively distributed, DHT-based database is the effi-
cient storage of structured data, which will be relational data in the case of UniStore.
This is because DHTs only support basic hash table operations:

• put(key, value): associate key with value

• value = get(key): retrieve the value associated with key

Based on these primitives, a partitioning scheme is presented in [KSHS06b, Wie06]
which provides the basis for this work. Fig. 4.1 shows the partitioning of a table with
three rows and columns. Each element (“value”) of each tuple is annotated with the
corresponding column name (“attribute”) and object identifier (“OID”), which must be
unique on a tuple basis, to form nine triples of the form (OID, attribute, value)1 (abbre-
viated as (OID, att, val)). OID is of type integer, att a string and val can be a string or
integer. Efficient access structures (“indexes”) are created by hashing certain elements
of the triples and storing them at the corresponding peer with put(). Two kinds of in-
dexes will be discussed in the next two sections. Note that in contrast to indexes found
in traditional databases, every index contains the triple itself, not just a pointer to it.

1similar to RDF triples

23

4 Foundations

1 BMW 150 20000

OID name hp price

2 Audi 80 3000

3 VW 120 15000

<1; ’name’; ’BMW’> <1; ’hp’; 150> <1; ’price’; 20000>

<2; ’name’; ’Audi’> <2; ’hp’; 80> <2; ’price’; 3000>

<3; ’name’; ’VW’> <3; ’hp’; 120> <3; ’price’; 15000>

Figure 4.1: Converting structured data to triples

Notation In the following, concatenation is denoted by “◦”. Some of the logical opera-
tors discussed in sec. 4.2.2 will already be mentioned here (typeset in italics). They are
equivalent to the logical operators known from database literature and define operations
on data, for example, extracting data (Extraction) or filtering of data (Selection). CouPé
must provide implementations for them which make use of the indexes described be-
low. h represents a prefix-preserving hash function responsible for hashing application
keys2 to the binary keys used in P-Grid. This special property can be expressed as (⊆
denotes the is-prefix-of relationship):

a ⊆ b ⇒ h(a) ⊆ h(b)

4.1.1 Exact-match Indexes

These indexes are used to implement the Extraction and Materialization operators.

OID Index For each triple, h(OID) is calculated and the triple is stored at the peer
responsible for this key. Therefore, all triples belonging to the same tuple will
end up on the same peer, allowing fast reconstruction of tuples with only one
member triple or even just the OID available. This allows the implementation of
Materialization (sec. 4.2.2).

2integers or strings

24

4 Foundations

Attribute-Value Index (AV Index) Each triple is inserted at h(att) ◦ h(val). The in-
dex can be utilized in four ways, the P-Grid key(s) used for lookup are shown in
parentheses:

• extract all stored data (a prefix query with an empty key)
• attribute extraction (a prefix query on h(att))
• exact-match on a given attribute/value (h(att) ◦ h(val))
• integer range queries on a given attribute (a range query on

h(att) ◦ h(lowerBound)− h(att) ◦ h(upperBound))

The first query simply fetches all data from the index. The second one limits this
operation to one column and returns all triples with this attribute name, the last
two additionally place constraints on the values. Range queries on a given at-
tribute are similarity queries: for a given integer value and a maximum distance,
the lower and upper bounds can be computed and used as range query param-
eters. This approach can not be used for string similiarity searches, because the
hash function does not represent distance information between two strings. An
alternative approach will be presented in sec. 4.1.2. The AV index is used for
implementing Extraction (sec. 4.2.2) and Materialization (sec. 4.2.2).

Value Index Indexing each triple on h(val) enables exact-match and integer range
queries on values irrespective of the attribute they belong to. This allows effi-
cient retrieval of all data with a given value, no matter in what part of the schema
it is stored. In this work the index will not be used.

Fig. 4.2 shows the three indexes for three inserted triples (<1; ’name’; ’BMW’>,
<1; ’hp’; 150>, <2; ’hp’; 80>) including the binary P-Grid keys as generated by
UniStore’s hash functions. Peer A stores all keys starting with 0, B all with 1. The
underlined triple components indicate the input to the hash function which generated
the binary key. The storage space required by each of these indexes is O(n) for n
triples.

4.1.2 Similarity Indexes

Up to now no useful method for similarity string search, a requirement from sec. 1.2,
has been provided. Only prefix searching is possible by using a prefix-preserving hash
function and a prefix query (sec. 2.2). Otherwise, all candidate data must first be ex-
tracted and then filtered, which is inefficient. Q-grams are an indexing approach for
string data which supports similarity access. A q-gram is a substring of length q which
can be used as an access key.

25

4 Foundations

A

Path: 0

OID Index
00000001 → <1; ’name’; ’BMW’>

00000001 → <1; ’hp’; 150>

00000010 → <2; ’hp’; 80>

AV Index
011010010110 → <1; ’hp’; 150>

011001010000 → <2; ’hp’; 80>

Value Index
01010000 → <2; ’hp’; 80>

000110111 → <1; ’name’; ’BMW’>

OID Index
-

AV Index
10000110111 → <1; ’name’; ’BMW’>

Value Index
10010110 → <1; ’hp’; 150>

B

Path: 1

0 1

Figure 4.2: Three triples indexed by OID, AV and Value distributed over two peers

Similarity

In the following, the Levenshtein distance metric will be used3 for specifying similarity.
Two strings s1 and s2 are in distance k when k is the minimum number of operations
needed to transform s1 to s2. Possible operations are insertion, deletion or substitution
of one character. Consider these examples:

dist(mistake,misstake) = 1

dist(mistake, mitsake) = 2

In the first, one deletion transforms the second string into the first one. In the second
example, two operations are needed, either two substitutions, or a deletion with an
insertion.

3also called edit distance

26

4 Foundations

mistake

$$mistake$$

$$m $mi mis ist sta

tak ake ke$ e$$

q-grams

Figure 4.3: Generation of q-grams from a string

Q-gram Generation

Q-grams are generated as follows: first, a value for q must be chosen, q = 3 will be
used in this work. For each string which should be searchable, such as the attribute or
a string value of a triple, q − 1 special characters not present in the alphabet (here: $)
are appended at the start and the end. The string is converted to lower case because
case-sensitivity is usually not desired for similarity search. Then, all possible substrings
of length q are generated (l + 2 for a string of length l). Fig. 4.3 illustrates this.

Q-gram Indexes

Each q-gram is hashed to kn = h(qn) and the corresponding triple stored at this key
in the DHT, and similarity search using Lehvensthein distance can be implemented on
top of this. Consider a search for a string s with distance d = 0 (only identical strings
shall be returned). The q-gram generation algorithm as outlined above is applied to the
string, including extension with a special character. Any generated q-gram qj(s) can
now be used to find potential matches by querying the DHT for h(qj). False positives
have to be filtered out, as the chosen q-gram can also be part of other strings. Fig. 4.4
shows two triples where the values have been indexed and a query for “misstake” . The
chosen q-gram is “$mi”. This locates both triples, but only the second one passes the
distance metric. For a query with d = 1, two non-overlapping q-grams must be queried.
Choosing only one would miss results when the modification falls in the range of the q-

27

4 Foundations

Triple 1:
<5; ’data’; ’misstake’>

Triple 2:
<43; ’data’; ’mitsake’>

$$m $mi mis iss sst

sta tak ake ke$ e$$

$$m $mi mit its tsa

sak ake ke$ e$$

q-grams

Query q-grams Results Filtered Results

s = misstake
d= 0

s = mistake
d = 1

$mi

$mi
sta

Triple 1, 2

Triple 1

Triple 1

Triple 1

indexed by

Figure 4.4: Similarity search using q-grams

gram. Two overlapping q-grams will miss results when the modification falls in the area
of the overlap. Two non-overlapping ones will find all matches: the difference between
the two strings might fall in the range of either one, but not both. Results must also be
filtered for false positives. Looking up “mistake” with d = 1, q-grams “$mi” and “sta” can
be used in conjunction and will match the first triple. In general, for a similarity search of
distance d, d+1 q-grams must be queried. When not enough non-overlapping q-grams
can be generated because the search string is too short, all overlapping q-grams are
used. Not all results might be found in this case. The following q-gram indexes can be
created:

Value Similarity Index This is comparable to the Values index presented above, but
only triples containing string-typed values can be indexed. For a string of length l
the triple is inserted l + 2 times at h(qi), 1 ≤ i ≤ l + 2.

Attribute-Value Similarity Index Searches can be limited to the values of a particular
attribute with this index. Triples are inserted at h(att) ◦ h(qi), 1 ≤ i ≤ l + 2.

Attribute Similarity Index Similarity searches on attributes (schema level) are needed
for the applications targetted by UniStore (sec. 1.2). To accelerate them, q-grams
are created for the attribute strings and triples are inserted at h(qi), 1 ≤ i ≤ l + 2.

These indexes are used by implementations of Extraction and combinations of
Extraction/Selection. It must be noted that they consume a considerable amount of
storage space, particularly for long strings. For n triples with an average indexing string

28

4 Foundations

length of m, n ∗ (m + 2) copies of the triples must be stored (O(n ∗m)). The attribute
similarity index can also cause a skewed storage load when there are not many distinct
attributes. Normally, P-Grid is able to balance this with its sophisticated algorithms, but
as the keys are identical in this case, this is not possible. It is possible to alleviate this
by appending random bit strings before applying the hash function. A prefix query can
still be used for retrieval. This was done in the tests in chapter 9.

Further details on q-gram indexes can be found in [Wie06, GIJ+01].

4.1.3 Remarks

Note that not all these indexes are required. Similar to relational databases, they can
be used to optimize for certain access patterns. A minimum setup only using the
AV index is possible. The OID index is only required by certain implementations of
Materialization. The value index need only be created if queries on all values happen
often. Of course, similarity indexes should only be created if string similarity queries
are common. As noted above, indexing is done on a triple basis. In practice this will be
used to specify indexes on an attribute or tuple basis. New indexes can also be added
later.

All in all, this storage scheme supports the expected usage scenarios really well. The
data is self-describing, no central catalog is necessary, which would be a bottleneck
both on the physical and organizational level in scenarios where many users contribute
data. The fine-grained granularity of the scheme makes it possible to extend existing re-
lations both horizontally and vertically. Similarity indexes allow efficient querying based
on Levenshtein edit distance. The main drawback is the increase in storage space.
The annotations (OIDs and attributes) are duplicated for triples in the same row or col-
umn, and each index stores the complete triple data. The triples are also sent over
the network during indexing and when the peer’s paths change, increasing bandwidth
consumption. Possible remedies are:

• Store the triples in one index only and reference them from all other indexes. For
example, the OID index could be used as main index, with OID ◦ att as primary
key. This approach requires additional lookups which can be very costly and make
some optimizations impossible.

• The local storage used on each peer can be optimized to handle and eliminate
some of the redundancies of the indexing scheme. For example, duplicate OIDs
(for the OID index) and attributes (for the AV index) need to be stored only once,

29

4 Foundations

thus restoring the relational structure of the data locally and possibly during trans-
mission.

• P-Grid compresses messages which can reduce bandwidth for duplicated triple
data considerably.

Note that storing a triple more than once is equivalent to replication, a desired feature
in P2P networks, where peer failures are to be expected. A proper balance between
limitations of storage and network capacities on one hand and efficiency of access and
reliablity on the other must be found.

4.2 Querying Structured Triple Data

4.2.1 Vertical Query Language

The Vertical Query Language (VQL) [Sch06, KSHS06a] has been designed for query-
ing triple data as seen in fig. 4.1, thus providing the frontend to query processing in
UniStore. It is based on SPARQL [PS06], an RDF query language. The syntax looks
like this:

SELECT [DISTINCT] <projection>
WHERE { <triple definition>

[FILTER <expression>] }
ORDER BY <variable> [ASC | DESC | NN <value>]
[LIMIT <n>] [OFFSET <m>]

Queries can operate on all three components of a triple: OIDs and attributes (schema
level) and values (instance level). In the following, available features will be illustrated
with example queries. It is assumed that two relations car and dealer exist, with
car.dlrid referencing dealer.id:

car(name, hp, price, dlrid)
dealer(id, dname, city)
car.dlrid → dealer.id

A basic query to display the price and horsepower of five BMW cars with at least 100
HP would look like this:

30

4 Foundations

SELECT p, hp WHERE {
<o; ’name’; ’BMW’> <o; ’price’; p> <o; ’hp’; hp>
FILTER hp >= 100

} LIMIT 5;

In the WHERE clause triples are specified with the same syntax as explained in sec. 4.1,
with OID, attribute and value components. Each component can either be a concrete
value or a variable. The latter are used to establish correspondences between
triples: “o” ensures that all triples have the same OID (i.e., belong to the same tuple). All
tuples that match the specified criteria form the result set. Additionally, variables can be
used to specify constraints other than exact-match with FILTER clauses. The available
operations are =, <, >, ≤, ≥, 6=. For “fuzzy” searches, a similarity operator ∼ is
available, with a numeric parameter specifying “how close” matches must be. For string
data, this can be used in conjunction with the Levenshtein edit distance metric. Given
two strings, it determines how many character insertions, deletions or substitutions are
required at minimum to transform one string to the other. The following query searches
for cars from dealers located in “Ilmenau” with some tolerance, so misspellings are
found as well. “Ilemnau” (distance 2) will be located, but not “Illemnau” (distance 3).
The query includes a join car.dlrid = dealer.id, specified implicitly by using the
variable did in two triples referencing the two relations.

SELECT dn, da, n, p WHERE {
<o; ’name’; n> <o; ’price’; p> <o; ’dlrid’; did>
<d; ’id’; did> <d; ’dname’; dn> <d; ’city’; da>
FILTER p < 10000
FILTER da ∼ ’Ilmenau’, 2

};

An ORDER BY-clause is available and provides the functions Minimum (ASC), Maximum
(DESC) and Nearest Neighbor (NN). The last computes the distance of a triple com-
ponent to a provided reference and sorts the tuples from minimum distance to maxi-
mum. Using this, the previous query can be modified to list “BMW” cars first, minor
misspellings will be displayed afterwards. In conjunction with LIMIT 5 this produces a
Top-N query:

31

4 Foundations

SELECT dn, da, n, p WHERE {
<o; ’name’; n> <o; ’price’; p> <o; ’dlrid’; did>
<d; ’id’; did> <d; ’dname’; dn> <d; ’city’; da>
FILTER p < 10000
FILTER da ∼ ’Ilmenau’, 2

} ORDER BY n NN ’BMW’, LIMIT 5;

All operators can also be applied at schema level. Suppose that not all car dealers
committed themselves to the car schema and used dlr or iddlr instead of dlrid as
the last attribute. The previous query can easily be modified to account for this.

SELECT dn, da, n, p WHERE {
<o; ’name’; n> <o; ’price’; p> <o; dlratt; did>
<d; ’id’; did> <d; ’dname’; dn> <d; ’city’; da>
FILTER p < 10000
FILTER da ∼ ’Ilmenau’, 2
FILTER dlratt ∼ ’dlr’, 2

} ORDER BY n NN ’BMW’, LIMIT 5;

Similarity joins on instance and schema level with a user-defined distance are also
possible. Supported data types are string, integer and float. In this work, only string
and integer will be used.

4.2.2 VQL Algebra

In [Sch06], a parser and an algebra for VQL are presented as well. The algebra has
much in common with its relational counterpart. The parser dissects a VQL query and
determines what operations of the algebra must be applied in what order to compute
the result. As the algebra is closed, results from operations can be used as input for
other operations. The output of the parser is a tree consisting of the algebra operations
(“logical operations”) with the last operator to be processed at the root and data flowing
from the leaves to the root. This is the logical operator plan [Kos00].

The next section documents the available operations. Their input is x. Informally, each
x is an ordered list of “jtuples”. A jtuple stores triple data in a structured way. A more
formal definition will be given afterwards. Logical operators are usually typeset in italics
in this thesis.

32

4 Foundations

Extraction

ξp(x)

All triples conforming to predicate p are extracted from the DHT; for example, all triples
with a given attribute or simply all triples.

Materialization

ωatt1,...,attn(x)

This operation extends the input jtuples vertically by the given attributes. For each
attribute specified, an additional triple is appended to each jtuple in the input list.

Selection

σp(x)

Just like in the relational algebra, all jtuples are filtered according to the predicate. All
available operations (=, <, ...) are supported both on schema and instance level.

Join

./p (x1, x2)

The cross product of both inputs is filtered by the predicate. Similar to Selection, all
available operations are supported on instance and schema level. Multiple predicates
can be specified, they are applied conjunctively.

33

4 Foundations

Ranking

ϕf1,...fn,limit,offset(x)

Three ranking functions are supported: Minimum, Maximum and Nearest Neighbor.
When multiple functions are specified they are applied in a nested fashion (see sec. 7.2
for details). The same function can be used multiple times for different variables. This
operation also handles the LIMIT and OFFSET clauses.

Projection

πatt1,...,attn(x)

Just like in the relational algebra, the projection eliminates all variables not present in
the parameter list. In VQL, variables can refer to OIDs, attributes or values. The output
is a tabular structure comparable to the result generated by a relational database. Each
variable specified in the SELECT clause is output in its own column, for every jtuple
(“row”) of the result set. This output is not part of the algebra. As no further processing
will take place, this is not required.

The operators presented will most likely be extended in the future. For example, skyline
or aggregation queries could be supported. A proposal for the latter is presented in
sec. 7.6.1.

Definition of Operator Input/Output x

x represents a list of jtuples, which store triple data in a structured way. It is not sufficient
to just use lists of triples as input/output of operators. For example, Materialization
makes use of the relationships between triples and matches them on the OID to form
tuples, which must be reflected in the output. This is abstracted in the following.

The simple case where each operator only operates on and produces one result row is
considered first. One triple (OID, att, val) is the result of a simple Extraction operation
and can be represented as t = (o, a, v). Each Materialization results in a number of
additional attribute/value pairs, extending this triple to a generalized tuple form:

34

4 Foundations

u = (o, a1, v1, ..., am, vm),m ≥ 1, which can be used for triples as well (m = 1). Joins will
operate on two such tuples, comparing a component from the first with a component
from the second. Note that the result of the Join must preserve both tuples, because
later operations can take place on either one. Therefore, another tuple is used to store
the tuples from the left and the right side, called “jtuple” (join tuple). Each Join simply
adds a new tuple to the jtuple, which results in output of the form v = (u1, ..., un), n ≥ 1
for n− 1 processed Joins.

In the general case, each operator processes an ordered list x = (v1, ..., vl), l ≥ 0 of
jtuples (ordered because the order established by Ranking must be preserved). Using
this definition, a triple as well as all kinds of intermediate results can be expressed by x
and used as input and output of all operations. A structure to store and exchange this
kind of data must be implemented as part of the query processor (see sec. 7.1).

4.2.3 Example: Logical Plan and Parameter Representation

The VQL parser produces the logical plan from a query. The plan is optimized – for
example, Materializations are inserted directly before operators depending on them,
Selections are pushed down to the leaves of the tree, thus reducing the size of interme-
diate results4. Consider this query:

SELECT o, n WHERE {
<o; ’name’; n> <o; dlratt; did>
<d; ’id’; did> <d; ’city’; dc>
FILTER dlratt ∼ ’dlr’, 2

} ORDER BY n NN ’BMW’;

The text representation of the logical query plan generated by the parser for this query
is shown next. The structure of the plan is depicted in fig. 4.5.

4in database literature, algebra optimizations are carried out by an additional rewriter component; this
distinction is not made here

35

4 Foundations

Projection

Materialization

Ranking

Materialization

Join

Extraction Extraction

VAR(o)::VAR(dlratt)::_~ STRING(’dlr’);DIST(2) VAR(d)::ATTRIBUT(’id’)::VAR(did)

Figure 4.5: The structure of the logical query plan

Projection <VAR(o):: :: ;VAR(o)::ATTRIBUT(’name’)::VAR(n)>(
Materialization <VAR(d)::ATTRIBUT(’city’)::VAR(dc)>(
Ranking <NN;VAR(o)::ATTRIBUT(’name’)::VAR(n);STRING(’BMW’)>(
Materialization <VAR(o)::ATTRIBUT(’name’)::VAR(n)>(
Join <VAR(o)::VAR(dlratt)::VAR(did) =

VAR(d)::ATTRIBUT(’id’)::VAR(did)>(
Extraction <VAR(o)::VAR(dlratt):: ∼ STRING(’dlr’);DIST(2)>()),
Extraction <VAR(d)::ATTRIBUT(’id’)::VAR(did)>()))))

The parameters of each VQL operator, enclosed in angle brackets (< / >), are given in
a special notation which must be parsed for further processing. They provide informa-
tion about:

• the scope of an operation: OID, attribute or value

• variable names and concrete values used in the query

• type information

• arguments for comparison and distances

36

4 Foundations

As explained in sec. 4.2.2, each jtuple stores many components (which can be OIDs,
attributes and values) linked together in certain ways. Therefore, the most important
information is what component of each jtuple should be processed by the operator.
This is specified by a triple-like notation. Consider the left child operator of the join, an
Extraction with the parameter VAR(d)::ATTRIBUT(’id’)::VAR(did), corresponding to
the triple <d; ’id’; did> in the query. In the OID part, VAR indicates that a variable
was used and its name d is given. ATTRIBUT specifies a concrete attribute. The value
part is similar to the object part. This operation will fetch all triples with attribute id.

The second Extraction VAR(o)::VAR(dlratt):: ∼ STRING(’dlr’);DIST(2) can be
read from left to right as “for the component VAR(o)::VAR(dlratt):: , perform a sim-
ilarity (∼) comparision against string dlr with distance 2”. But what component is ad-
dressed here? No concrete attribute name is given, and the value part contains only “ ”.
This indicates a schema level operation on the attribute itself – all triples with an attribute
similar to dlr will be fetched. Next, the Join ensures that the values of the fetched triples
correspond. Notice how the notation is used to address the components needed: the
object part specifies the left and right branches of the Join, respectively. The attribute
for the right side is given, for the left side it is not known, so the variable is provided in-
stead. The result of the join will be a list of jtuples, each consisting of two tuples (i.e., the
data fetched by the Extractions). OMEGA<VAR(o)::ATTRIBUT(’name’)::VAR(n)> mate-
rializes the name attribute. For that, a OID must be available. Notice that there are two,
one for each of the Extractions. The OID component of the notation, VAR(o), identifies
the correct one to use. Finally, an operation on an OID can be seen in the Projection,
which outputs the OIDs associated with variable o, specified as VAR(o):: :: .

The logical query plan must be analyzed in this way by the query processor and the col-
lected information used in the subsequent stages. This is discussed in sec. 5.3. Further
details on the syntax and semantics of VQL parameters can be found in [Sch06].

37

5 CouPé: A Query Processor for UniStore

The first section highlights the challenges for query processing in UniStore along with
possible solutions. A query processor architecture is presented in section two and one
component – the query planner, responsible for mapping logical to physical operators –
introduced in the last section.

5.1 Challenges

Traditional distributed databases share many of the goals of DHT databases and con-
sequently, many of the challenges in query processing are the same:

Data Localization All data relevant to the query must be found, and all corresponding
nodes contacted. Data can be replicated to enhance parallelism, fault tolerance
and load balancing, which makes the choice of the nodes to utilize harder.

Efficient Distributed Processing Dependent on data distribution, node capabilities and
available resources, the query must be executed in a distributed setting efficiently,
with certain optimization goals (for example, minimum response time). Parallelism
and specialized operators, like semi joins and hashfilter joins, should be used
where possible.

Account for Communication Costs They often are the dominating factor in distributed
settings. Important parameters for query planning are the available bandwidth,
latency of links and the size of messages. In many cases it is best to process data
on the nodes storing it, reducing the cardinality and therefore the transmission
costs for subsequent processing. On the other hand, this might lead to hotspots
forming on nodes with popular data. Parallelizing query processing for speedup
causes higher communication costs – a balance must be found.

Global knowledge in the form of schemas and statistics makes it relatively easy to deal
with these challenges in distributed databases. The execution of a query in such a

38

5 CouPé: A Query Processor for UniStore

system progresses as follows [Sat06]:

Query Transformation The query1, posed on the global schema of the database, and
submitted to a central query processor, is parsed and transformed to the equiva-
lent algebra representation, which may also be optimized.

Data Localization Locate all data relevant to the query by consulting the distribution
schema. All nodes storing data must be involved in the processing of the query
(except for replication nodes).

Global Optimization Based on parameters like execution and communication costs
and global statistics, an optimal query plan is generated which specifies where
and when to execute operators. The participating nodes receive the parts of the
plan they are responsible for.

Local Optimization and Code Generation The subplans are optimized locally and ex-
ecutable subplans are produced.

Execution The subplans are executed, with the central processor overseeing execu-
tion, receiving intermediate results and producing the final answer.

In contrast, DHT databases can only rely on local knowledge. Only the hash functions
which map application keys to DHT keys (sec. 4.1) can be considered global knowledge
and are used for efficient data localization. However, they do not provide as much
information as the distribution schema in distributed databases: they do not reveal on
how many or on which peers data is stored, making it practically impossible to generate
a good query execution plan upfront. Thus, a mechanism for generating and refining a
physical query plan while the query is running is desired – the emphasis should be on
local optimizations (“adaptive query processing”).

UniStore also does not enforce a global schema – users are encouraged to extend
existing data as needed. It is also expected that data is inconsistent both on instance
level (for example, typing errors) and schema level (different schemas for the same
concepts). Therefore, similarity and schema level operators are needed. The algebra
presented in sec. 4.2.2 already provides them, they must be implemented efficiently.
Operators in general should not fail in the face of adversity, but instead provide best
effort. For example, missing data or mismatching data types should not cause failure of
the query, the malformed data should simply be ignored.

Best effort is also a requirement for the query processor as a whole: peers can join
and leave the network at any time, even fail without warning, but the system may not

1formulated in SQL, for example

39

5 CouPé: A Query Processor for UniStore

be disrupted by this. While malicious nodes are also a concern in P2P systems, they
are not considered here. Due to these cirumstances, 100% complete results are not a
realistic goal in such a system. Luckily, because of the sheer amount of data, this is not
necessary: often there are many equally good results, and providing a few of them fast
is more important than delivering all. This point is also illustrated by mainstream search
engines. Therefore, fast initial responses which can be refined later are desired.

Features of P-Grid such as prefix queries should be used to enhance the system. While
these features might not be available in other DHTs it is often possible to emulate
them.

The design presented in the remainder of this chapter deals with all of these chal-
lenges.

5.2 Overview of Query Processing in UniStore

In fig. 5.1, the processing of a query in UniStore is depicted. Each component exists on
every peer. First, the declarative VQL query issued by a user or an application is fed
into the VQL parser, which generates an optimized logical operator tree as outlined in
sec. 4.2.3. Next, the query planner substitutes appropriate implementations – physical
operators – for each logical operator, yielding a physical query plan. Multiple planner
implementations are available, differing in the physical operators they substitute. Most
of them will only change part of the plan, but it must be ensured that all logical opera-
tions result in executable code, so more than one can be applied. As global knowledge
is not available in P2P systems, it is difficult for the initiating peer to generate an opti-
mal physical query plan. Therefore, the plan passed to the execution engine may still
contain logical operators which are substituted during processing with a “lazy evalua-
tion” approach, thus making it possible to use local knowledge available at the peers
involved. Of course, the planners to use for this must be included in this case. The
execution engine evaluates the operators in the correct order, they in turn access the
data stored on peers or process data provided by other operators. The final result is
returned to the user on the initiating peer.

Note that while the VQL parser will be invoked on the initiating peer only, the plan-
ner, engine and operators of many peers are utilized. As the parser has already been
implemented as part of a diploma thesis [Sch06], this work only covers the planners,
execution engine and operators, with the focus on the last two. The query planners
only need to be able to alter plans to test different operators and provide relatively sim-

40

5 CouPé: A Query Processor for UniStore

VQL Parser
Execution

Engine

Query

Planner

VQL

Query

Logical

Query Plan

Log./Physical

Query Plan +

Strategies Result

Strategies Operators

Figure 5.1: Query processor architecture

ple optimizations. Complex optimizations, for example involving data distributions and
selectivity, are left for future work. They are discussed in the following section. The
execution engine and the operators are documented in chapters 6 and 7.

5.3 Query Planners

The planners are responsible for instantiating logical operators, supplied as part of log-
ical query plans by the VQL parser, with physical operators. An m : n mapping is used:
m logical operators can be implemented by n physical operators (m,n ≥ 1). Each plan-
ner is able to deal with a subset of logical operators and more than one can be applied
to a plan. A basic planner is available which can map all logical operators to implemen-
tations. Table 7.1 shows all planners in conjunction with the physical operators they
substitute. Planners can be invoked at two points in the query execution process:

• Instantiation can happen before the query is passed to the execution engine for
the first time. Once an operator has been mapped, other planners have no effect
on it. As this happens on the query initiator, the resulting query plan may not be
optimal.

• During query processing, any remaining logical operators are mapped by the plan-
ners as needed (“lazy instantiation”). This can incorporate local knowledge like
current load or data distributions and opens the door for advanced optimizations,
an area where much research is needed in the context of P2P systems (“adaptive
query processing”). The planners to be used must be specified in the query plan.
While the current implementation is only able to reference one it can easily be

41

5 CouPé: A Query Processor for UniStore

extended if necessary.

Since complex optimizations will not be performed, the second approach is not needed.
Therefore, the logical query plan is converted to a physical plan on the initiator. Each
logical operation in the plan has a type (i.e., Extraction, Materialization) and parame-
ters. This information must be obtained by parsing the query plan emitted by the VQL
parser (sec. 4.2.3).

For each logical operator in the plan the query planners are consulted until one claims
responsibility. It parses the parameters of the operator, initializes physical operators
with them and places them in the plan. When each logical operator has been handled,
this results in a plan consisting of physical operators only. A planner can also consume
multiple logical operators at once, as mentioned above. Finally, the physical plan is
passed to the execution engine, which will be discussed next.

42

6 Execution Engine

In this chapter a key component of the query processor, the execution engine, will be
presented. The first section discusses possible plan processing strategies. The Mutant
Query Plan (MQP) strategy is chosen and section 2 and 3 explain its implementation in
CouPé. Extensions for it are presented in section 4. After that, ways to keep the user
informed about the state and completion of a query are discussed. The final section
provides a short summary and outlook.

6.1 Execution Strategies

Given a query plan consisting of logical and/or physical operators1, the query processor
must find a way to arrive at the results. One part of this process, the mapping of
logical to physical operators, has been discussed in sec. 5.32. The remaining task is
the evaluation of the physical plan itself utilizing the operator implementations. Possible
strategies for this are:

Data Shipping This simple approach fetches all data and processes the query locally.
This incurs high communication costs and parallelism is non-existent. In cases
where the same data set is queried frequently and can be cached this approach
is a viable solution.

Query Shipping The query (or a subplan) is passed to the peer storing the data, pro-
cessed and the results are sent back. For most operations, communication costs
will be lower relative to data shipping and higher concurrency can be achieved.
This approach is used in most distributed databases.

Hybrid Shipping None of the previous approaches are ideal for all queries. Hybrid
shipping chooses the better strategy depending on the query and the data already

1an example plan consisting of logical operators is depicted in fig. 4.5
2although this will be done on the initiator in this work and not during processing, the latter will also be

discussed in this chapter, as the engine already supports it

43

6 Execution Engine

cached at the client. This requires a more complex query planner.

Details on the aforementioned shipping methods can be found in [Kos00].

Mutant Query Plans (MQPs) [PM02b] This concept has been designed for systems
where a central processing component is not feasible. In addition to the operator
tree, query plans also contain data and references to data. The references are
resolved by routing to the nodes storing the data. Operators are evaluated if possi-
ble, they store results in the plan. In the basic approach this happens sequentially.
Thus, each peer mutates the plan and forwards it. When all operators have been
processed, the plan, now containing the results, is sent back to the inititator. As
both query and data are shipped in this approach it is also termed combined ship-
ping. The lack of a central coordinator makes it a good fit for CouPé. Another
interesting aspect is the low footprint. Since a plan is processed and then for-
warded, it only consumes resources on one peer at a time3 – the complete state
of the query is encapsulated in the plan. In query shipping systems, resources
on multiple nodes are occupied at the same time. The P2P environment can be
fragile and network connections can time out – the fewer resources allocated dur-
ing this idle time, the better. On the flip side, this basic variant does not support
concurrency. The authors propose strains, which are in effect parallel MQPs but
require some kind of synchronization at a later point, again tying up resources.
As the whole query plan is available on each peer many optimizations become
possible – it can be restructured and optimized with the aid of local knowledge.

Because of these traits, MQPs will be used as the basic concept for plan execution.
Their simplicity allows for a quick initial implementation, while parallelism and other
enhancements can be added later.

6.2 MQPs in CouPé

The structure of an MQP as used in CouPé is shown in fig. 6.1. It is similar to the plan
generated by the VQL parser depicted in fig. 4.5, but in addition to the logical operators
(typeset in italics) it also contains physical operators (typeset in monospace), Extract
and LocalJoin, two implementations of Extraction and Join4. Physical operators are
state machines and perform tasks like initialization, routing of the plan or plain data
processing. They can extract data from the DHT or consume data provided by their
children in the plan. Each physical operator is able to store the data it produces and in

3except for the short moment of transmission
4described in detail in sec. 7

44

6 Execution Engine

turn make it available to its parent operator. Therefore, data flows from the leaves to the
root of the operator tree. For transport between peers an MQP, including all of its data
and operator state, is serialized and attached to a special P-Grid message.

Projectionname,dname

Materializationdname

Materializationname

LocalJoinid=dlrid

State: INITIAL

Data: -

Extractdlrid

State: ROUTING

Data: <142;’dlrid’;3>

<490;’dlrid’;10>

Extractid

State: INITIAL

Data: -

Figure 6.1: A Mutant Query Plan in CouPé

This work enhances the original MQP proposal presented in [PM02b]. For example,
operator implementations are relatively autonomous – they can duplicate the query plan
and even change its structure and the data stored, adding another mutation dimension
to the concept. Therefore, the term M2QP will be used in the following to distinguish it
from the original MQP proposal. For simplicity, “query plan” and “plan” are used as well
and also refer to M2QPs.

45

6 Execution Engine

6.3 Serial M2QP Execution

First, a straightforward implementation of the concept described above will be pre-
sented. As it features no parallelism and processes the operators in sequence it is
termed “serial”. Other execution strategies base on it, so it will be examined in detail.

When a query plan has been submitted to the execution engine, it must make sure that
operators are started in the correct order: child operators must run before their parent
so that the data the parent relies on is available when it is run. This can easily be
achieved by traversing the operator tree in postorder, which generates a list of the op-
erators (“operator queue”) with the parent guaranteed to appear after all of its children.
Left subtrees are evaluated before right subtrees. Fig. 6.2 shows the queue for the plan
in fig. 6.1. The root operator which is responsible for storing the final result is at the
bottom of this list. Note that this execution order also fits the logical plans generated
by the VQL parser, which makes sure that Materializations are only inserted immedi-
ately before the operators depending on them and Selections are pushed down to the
leaves [Sch06]. Both measures reduce the amount of data stored in the operators at a
given time. This is vital for the M2QP concept as the complete plan is sent around the
network.

Projectionname,dname

Materializationdname

Materializationname

Extractdlrid

Extractid

LocalJoinid=dlrid

Figure 6.2: The corresponding operator queue

The central algorithm for processing an M2QP is shown in fig. 6.3 and will now be
discussed in detail. First, the root operator is checked for completion. In this case
the result is sent to the initiator and execution is complete. Otherwise, the engine
checks the queue for operators to process. The first physical operator encountered

46

6 Execution Engine

void processPlan(Plan p) {
while (true) {

if (p.rootOp.isDone()) {
sendResult(p.getInitiator(), p.rootOp.getResult())
break

}
Operator[] opQueue = p.postOrder()
Operator activeOp = findFirstNotDone(opQueue)
if (activeOp is LogicalOperator) {

// replace with physical operator
QueryPlanner.instantiate(p, activeOp)
continue

} else {
// pass control to operator for processing
boolean doRoute = activeOp.process()
if (activeOp.isDone()) {

activeOp.removeChildren()
}
if (doRoute) {

// send plan to next peer, finished on this one
routePlan(p, activeOp.getDestination())
break

}
}

}
}

Figure 6.3: Serial postorder processing of an M2QP

47

6 Execution Engine

which is not marked DONE or the first logical operator is considered. In the latter case,
the query planner is consulted for the corresponding physical operator(s). It will insert
them in the plan, so the queue must be updated and the process starts over (with a
physical operator now being available). Otherwise, the execution engine passes control
to the operator which performs tasks depending on its current state. With the return
value it specifies whether the plan must be routed before processing can continue. The
operator can also mark itself as DONE. When routing is required, the engine serializes
the plan and sends it to the peer specified by the operator via its P-Grid path, using
P-Grid’s routing layer. On the receiving peer, the plan is passed to the local execution
engine which starts over with this algorithm5. Once an operator has moved to the
DONE state the engine will move to the next one in the operator queue. The children
of the operator can be removed at this point, which reduces the size of the plan. The
algorithm processes as much of the plan as possible – until the result is available or an
operator requires routing. This means that a plan where no operator requests routing
will be processed on the initiator only. A completed plan is shown in fig. 6.4. Failures
are tolerated as far as possible (“best effort”). If a fatal error occurs, a failure notice is
sent to the query initiator.

Projectionname,dname

State: DONE

Data:

name dname

 BMW Auto Meier

 VW Autohaus Ilm.

Figure 6.4: The final plan

6.3.1 Forward Processing

One drawback of this approach is the sometimes unnecessary size of the plans gen-
erated during processing. Consider a query which first extracts a big amount of data
stored across many peers and then performs a selection on it. The physical opera-
tors Extract and LocalSelection can be used for this (discussed in detail in sec. 7).
Following the serial strategy, Extract will be executed first, traversing the peers and
accumulating all data, before LocalSelection is run and gets a chance to reduce the
number of jtuples. To improve this, the concept of forward processing is introduced:
operators can be “chained” to their parent operators, and each time an operator returns

5unless the active operator has marked itself as DONE, execution will resume with it

48

6 Execution Engine

...
boolean doRoute = activeOp.process()
// additional forward processing code
Operator op = activeOp
while (op.processParent()) {

Operator parent = op.getParent()
parent.process()
op.clearJTuples()
op = parent

}
// end additional forward processing code
if (activeOp.isDone()) {

...

Figure 6.5: Forward processing algorithm

from its process() method, the engine immediately executes its parent operator, even
if the current one is not yet in the DONE state. In the example above, LocalSelection
will be called after Extract has extracted data on the first peer. It processes the jtuples
supplied by Extract and stores the matching ones. Afterwards, the execution engine
clears the jtuples in Extract. Therefore, the plan size is reduced by the number of
filtered jtuples. An arbitrary number of operators can be linked together in this fash-
ion, fig. 6.5 shows the algorithm which extends the processPlan() method shown in
fig. 6.3.

Forward processing also allows an easier implementation of physical operators. Some
logical operators have common functionality6. Instead of implementing it in two physical
operators it can be isolated to one. The distinct functionality is implemented in additional
ones which will be used together with the common operator and forward processing.
This reduces code duplication and the chained operators still have the same properties
as a single one as far as the execution engine is concerned. It is also possible to run
the chained operators in parallel (pipelined parallelism [YM98]).

A great disadvantage of serial M2QP execution is slow processing, as no multi-peer
parallelism is used. Approaches to improve this will be presented next.

6for example, the VQL Extraction operation also allows similarity Selection on schema level

49

6 Execution Engine

6.4 Parallel M2QP Execution

One form of parallelism, pipelined parallelism, has already been mentioned in the pre-
vious section, but it is limited to one host. The advantage of a large DHT database is
that processing can happen on many nodes at the same time. Two forms of parallelism
for this are [YM98]:

Intra-operator Parallelism One operator is simultaneously processed on multiple peers.
One example is the Extraction of data from an index distributed over many peers.
Because there are no interdependencies, the operator can be executed in parallel.
It is necessary to merge the data at some point to generate the final result. Other
operations which can profit from this approach are Materialization, Selection, Join
and Projection.

Inter-operator Parallelism Operators or subplans are run in parallel. In contrast to
pipelined parallelism no communication takes place – the subplans must be inde-
pendent of eachother so that no plan requires the output of any other. The results
are later combined. This approach will be used to process branches of binary
operators in parallel.

These forms of parallelism have been implemented in the execution engine and the
physical operators. Only the engine will be discussed in the next three sections, but
some physical operators will also be introduced (typeset in monospace) . A more de-
tailed description of them can be found in sec. 7.

6.4.1 Prefix Queries

One drawback of serial M2QP execution is the high latency, as the peers storing data
required by an operator are contacted in sequence. They are addressed by their P-
Grid path in this case. However, P-Grid can also send messages to groups of peers
specified by their common path prefix using prefix queries (sec. 2.2). This can be used
in conjunction with the AV index presented in sec. 4.1.1: an operator requiring the triple
data of attribute x simply addresses the plan to prefix h(x) and P-Grid routes it to all
responsible peers, where the plans are processed in parallel and the operator extracts
the locally stored data (intra-operator parallelism). ParallelExtract (sec. 7.3.2) and
ParallelAVMaterialize (sec. 7.3.2) use this feature.

For an example, consider fig. 6.6. This is the same query plan as in fig. 6.1, but all

50

6 Execution Engine

logical operators have been instantiated and prefix queryimplementations have been
used. One Materialization has been omitted for clarity and operator states and data
are not shown. Processing starts at ParallelExtractdlrid. The operator requests that
the plan is routed to prefix h(dlrid), so it is sent to all k peers storing data of the AV
index for this attribute in parallel (AVdlrid). Each one processes the plan just like in
the serial case. Therefore, ParallelExtractid is processed next, again duplicating the
plan and routing it to the l peers storing AVid. At this point, k∗l plans exist in the network.
These peers also process LocalJoin using the data stored in the two ParallelExtract
operators. Note that each possible combination of AVdlrid - AVid fragments is generated
by this query plan dissemination, thus ensuring correct join processing. One last time
the plans are duplicated by ParallelAVMaterializename and sent to m peers. The final
Projection is processed locally on them and k ∗ l ∗ m result plans are returned to
the query initiator. Fig. 6.7 provides an overview: the peers associated with the AV
indexes, the query initiator and the query plans sent between them are depicted for
k = m = 2, l = 3 and 12 results are generated. The operators are associated with
the peers on which they perform their main task (i.e., data extraction or processing, not
routing). When multiple messages are transmitted between peers this is indicated by a
number.

ParallelExtractdlrid ParallelExtractid

LocalJoindlrid=id

ParallelAVMaterializename

Projectionname,id

Figure 6.6: A physical query plan using prefix queries

This scheme has overhead. For example, two peers process ParallelAVMaterialize.
Only one can process any given jtuple generated by the preceding operator, because
the AV index for the attribute is split between the peers, but the prefix query mechanism
sends the complete jtuple data to both. While the operator will discard data it cannot
materialize, this still causes twice as much traffic as necessary.

51

6 Execution Engine

Parallel-

Extractdlrid

ParallelAV-

Materializename,

Projectionname,id

Query

Initiator

Query

Initiator

Parallel-

Extractid,

LocalJoindlrid=id

2

2

2

2

2
2

6

6

Query plan

message(s)

Figure 6.7: The messages sent during processing of the query plan

Plan Synchronization

The concurrent plans resulting from prefix queries must be merged. In the above ex-
ample this happens on the query initiator: arriving result plans are merged with those
previously received and the updated result is signalled to the application/user. This on-
line processing [HHW97] strategy provides quick initial results, a requirement stated in
sec. 5.1. After a timeout without new results the allocated resources are freed and the
query is considered complete.

However, for operators which depend on the complete output of their children7, syn-
chronization during plan processing is required – all parallel M2QPs with input for that
operator must be collected and merged on one peer. But it is not even known how many
parallel M2QPs exist. One solution is to wait some time for plans, but this introduces an
unacceptable delay in processing, especially with multiple blocking operators in a plan.
Currently the only blocking operator in VQL is Ranking and it will only appear once in
a plan, but extensions of the VQL algebra might change this. In most cases it appears
at the top of the plan, immediately below Projection and Materializations of jtuples with
no dependency on it (fig. 6.8). As synchronization has to happen on the query initiator
anyway, the plan could be rewritten so that Ranking always appears below Projection

7called blocking operators because they stall pipelined processing

52

6 Execution Engine

(fig. 6.9). The Ranking implementation would route the plan to the initiator, where the
final two operators are processed locally. However, Ranking often reduces the number
of jtuples in the plan by a considerable amount, for example when the LIMIT clause is
used. A rewritten plan would materialize all jtuples, leading to higher bandwidth con-
sumption and slower processing.

...

Projection

Materializationy,z

Rankingf(x)

Figure 6.8: A typical VQL plan containing Ranking

...

Projection

Rankingf(x)

Materializationy,z

Figure 6.9: Rewritten plan to process Ranking on the initiator

Because of this and to be able to handle future blocking operators like aggregation as
well, a more general solution has been implemented. Each blocking operator routes
the plan to a synchronization peer, where the jtuples stored in the child operators are
added to those collected on the peer from other plans of the query. The accumulated
jtuples are inserted in the plan and processing continues. This way, multiple revisions
are produced, each getting more accurate. The plan is tagged with an incrementing
revision number so the query inititator can identify the latest plan. In contrast to the
aforementioned solution synchronization is not limited to the initiator. The plan can be
split again afterwards, allowing for multiple blocking operators in one plan. After a time-
out without any accesses the central peer discards the accumulated jtuples. Fig. 6.10
shows the extension of the original M2QP algorithm of fig. 6.3 with synchronization. The

53

6 Execution Engine

...
QueryPlanner.instantiate(p, activeOp)
continue

} else {
if (activeOp.isBlocking()) {

GUID g = activeOp.getGUID()
// get synchronization data for operator
SynchData d = synchData.get(g)
Operator leftChild = activeOp.getLeftChild()
Operator rightChild = activeOp.getRightChild()
// add jtuples from plan to synchronization jtuples
d.addLeftJTuples(leftChild)
d.addRightJTuples(rightChild)
// put synchronization jtuples in plan
leftChild.setJTuples(d.getLeftJTuples())
rightChild.setJTuples(d.getRightJTuples())
d.revision++
p.revision = d.revision

}
// continue processing on synchronized jtuples
boolean doRoute = activeOp.process()
...

Figure 6.10: Algorithm for synchronization

blocking operator is responsible for requesting routing to the synchronization peer and
may only return true for isBlocking() when it has been routed to the peer.

Because all operators in the plan on top of Ranking are processed for each generated
revision, the traffic is multiplied by the number of plans received at the synchronization
peer. This can be reduced by only generating a new revision for every n plans or by
waiting a certain time between revisions.

Naturally, the synchronization peer would be specified by its path. Due to P-Grid’s
replication feature this is not possible – multiple peers with the same path can exist and
a plan can arrive at any of them. To work around this, the plan is sent to a concrete
peer specified by IP address and port. For every query a different peer can be chosen
to balance load. When no IP address/port number is known, P-Grid’s peer lookup can
be used on a random binary P-Grid key to obtain the address of one responsible peer.

The single synchronization peer can become a bottleneck in big networks or for big
query plans. For certain operations it is possible to use multiple peers and balance

54

6 Execution Engine

load. In this work, only the general solution as outlined above has been implemented;
optimized approaches are left for future work.

6.4.2 Plan Cloning

Prefix query parallelism relies on P-Grid’s routing layer for plan duplication so it can only
be used when appropriate indexes are available. Plan cloning eliminates this limitation
by allowing operators to generate multiple copies of the current plan. Each one can
be modified and routed to a different peer. This second approach to intra-operator
parallelism provides great control over query processing.

One problem with prefix query operators was the increase in traffic caused by their
“brute-force” multicasting, as shown for ParallelAVMaterialize in sec. 6.4.1.
ParallelOIDMaterialize is an implementation using plan cloning which does not suf-
fer from this problem. An example query plan and the exchange of plans during pro-
cessing are shown in fig. 6.11 and fig. 6.12. First, the plan is routed to the two Parallel−
Extract peers (prefix query). Each peer stores two jtuples, which are fetched, and for
each one a separate plan is generated and routed to the corresponding peer of the
OID index for Materialization. Therefore, each jtuple is only sent to a peer where it can
be processed. The drawback is the overhead of the message headers and plan data
structures, so the operator might only be efficient for relatively large jtuples. Four result
plans arrive at the initiator.

ParallelExtractdlrid

Projectiondname,dlrid

P.OIDMaterializedname

Figure 6.11: Plan cloning: example query plan

55

6 Execution Engine

Parallel-

Extractdlrid

ParallelOID-

Materializedname,

Projection

Query

Initiator

Query plan messages

Query

Initiator

2

<2;’dlrid’;21>

<5;’dlrid’;34>

<1;’dlrid’;56>

<4;’dlrid’;770>

<1;’dlrid’;56>

<4;’dlrid’;770>

<5;’dlrid’;34>

<2;’dlrid’;21>

Figure 6.12: Plan cloning operator processing

56

6 Execution Engine

6.4.3 Parallel Execution of Binary Operators

The serial and parallel execution strategies still evaluate branches of binary operators
sequentially (i.e., in postorder). Join is the only such operator in the VQL algebra but
others, like union or intersection, could be added. In this section the possibility of exe-
cuting the left and right branches in parallel will be explored (inter-operator parallelism).
This could even be generalized to n-ary operators, but the focus in the following will be
on joins.

Depending on the operators used in the branches, they will produce exactly one – if
no prefix query or plan cloning operator is used – or multiple query plans each. In
both cases the key question is how to synchronize: each plan from the left must be
combined with each from the right and the join processed on this data. Consider the
logical query plan shown in fig. 6.13. The results of the branches will be available on
the peers involved in the processing of Materializationc and Materializationd . If there
are only serial operators in a branch the result will be available on the last peer involved
in the processing. Usually it is not known which peer this will be. Fig. 6.14 shows
the query plan with parallel operator implementations. The results of the two branches
will be available on the peers storing the AV index for c and d in this case. A natural
solution would be to send them from the left to the right side with another prefix query
on h(d). The joins would then be computed on these peers in parallel. Because of
P-Grid’s replication, this approach does not work – multiple peers exist for a given path
and it can not be guaranteed that the prefix query reaches the same set of peers which
processed ParallelAVMaterialized. A special prefix query could be started to find out
one representative set of IP addresses for these peers before the query is started. They
could be stored in the plan and used during processing by both branches. A drawback
is that the lookup will delay the start of plan processing, and the approach will most
likely not be very robust.

Instead, the mechanism for synchronization on a single peer is used (sec. 6.4.1). The
principle is the same but the algorithm for merging the data differs and will be described
below. While a central component is not ideal for P2P environments, it is deemed
sufficient for evaluating the difference parallel join processing makes. Furthermore, this
works for all kinds of physical operators and logical query plans, not only prefix query
operators.

In practice parallel join processing is triggered as follows: an M2QP containing logical
and/or physical operators is generated and cloned. In place of the usual LocalJoin

57

6 Execution Engine

Joinc=d

Materializationc

Extractiona Extractionb

Materializationd

Figure 6.13: A query plan which can profit from parallel join branch execution

Joinc=d

Parallel-

AVMaterializec

ParallelExtracta ParallelExtractb

Parallel-

AVMaterialized

Figure 6.14: The physical query plan using intra-parallel operators

operator ParallelJoin is used which extends it by synchronization. In one copy of the
plan, all operators from the left branch are marked inactive, in the other copy the right
branch. The execution engine will still process plans in postorder but skip the inactive
operators which leads to the exclusive execution of the branches. Both plans are then
tagged with the same query ID and passed to the engine. When an M2QP reaches
the synchronization peer the data it contains (either in the left or right child operator of
the join) is appended to the locally stored data from previous plans. Then, the other
join side of the current plan is filled in with local data and processing continues. This
incremental approach ensures complete join processing even if the branches contain
parallel operators generating multiple plans. The local data is discarded after a timeout
without any accesses.

6.5 Query Status and Completion

One drawback of the serial and parallel M2QP query processing strategies is the lack
of feedback to the user. The result of a serial query may not be available immediately.

58

6 Execution Engine

It is not known how long processing will take – the user simply has to wait. Messages
may get lost, so there is no way to distinguish between long-running and failed queries.
For parallel processing, the number of result plans that will arrive is not known. While
the result is continuously updated via online processing, the user does not know how
complete it is. Approaches to remedy these problems will be presented in this section.
Implementation is left for future work.

6.5.1 Serial Strategy

Currently, the query processor waits until the result arrives or an error message indi-
cates failure8. This message or the query plan itself can get lost and the user will not
receive any feedback at all. The key questions in this context are “Is the query still
running?” and, more specifically, “How much of it has been completed?”, which allows
to estimate when the result will arrive.

The simplest solution for the first problem is to consider all queries failed which do not
deliver the result in a given time. But successful queries can also take long using the
serial strategy, so this timeout would have to be high and the user would still be left
without any information during this period. As an alternative, the peers processing the
query could send update messages to the initiator (“heartbeats”), thus indicating that
the plan is still “alive”. While the initiator also has to wait a certain amount of time
between each such message during which it does not know anything about the state
of the query, this interval is much smaller than the one between the start of the query
and the final result. The loss of heartbeats is no big problem, as the next will be sent
soon after. Information about the state of plan execution can be included which is very
useful, as some aspects of the plan might only be known during query time9. Because
they can also be used for the parallel execution strategy, heartbeats were implemented
in two different forms:

Peer Heartbeat Each time an M2QP reaches a peer, a heartbeat message is sent
before processing of the plan begins. Should a peer be contacted multiple times,
it will also send multiple notifications. This provides essential “query still alive”
information. No message will be sent during local processing, but these periods
should not be very long.

8only fatal errors cause this – many errors are tolerated (“best effort”)
9for example, the number of jtuples about to be processed by an operator, which can help to estimate

execution time

59

6 Execution Engine

Operator Heartbeat This type of heartbeat is sent for each operator in the plan when it
is first processed. Operators contain a GUID10 for identification which is included
in the heartbeat message, so the initiator can determine how much of the plan has
been processed. Note that multiple notifications will be sent when multiple copies
of the plan exist in the network, for example after processing of a plan-splitting
operator like ParallelExtract.

Both types can be enabled on a query basis. They can be used together and provide
fine-grained, lightweight feedback. By using its knowledge about the query plan and the
physical operators in conjunction with the feedback (including query-time statistics) the
initiator can construct a model to provide good estimations for the two questions posed
in the beginning (“query still alive” and “percentage completed”). Based on them the
user can make an informed decision whether to wait longer for the result.

6.5.2 Parallel Strategy

The challenge for a query processed by parallel operators is to determine when all of
the concurrently generated result plans have arrived at the initiator. Synchronization
also had to deal with this problem (sec. 6.4.1) and online processing was introduced
as a solution, which continuously merges incoming result plans and signals the refined
result to the user. A timeout was used to end the query. In a P2P setting it is not possi-
ble to exactly calculate the number of plans that should arrive due to the lack of global
knowledge and possible failures during transmission. Therefore, approaches for esti-
mation will be presented in the following, which still provide a substantial improvement
over a fixed timeout implementation.

Initiator Feedback

The first idea uses additional messages, including heartbeats, sent from the peers dur-
ing processing to the initiator, which builds a model to estimate how many result plans
will arrive.

A query starts with a single plan and each parallel operator duplicates it by a certain
factor. ParallelRanking will merge these plans again and may generate multiple revi-

10globally unique identifier

60

6 Execution Engine

sions. Therefore, the two key questions are (1) “What is the final revision?” and (2) “How
many result plans are part of this revision?”

(1) Revisions are only used for ParallelRanking and ParallelJoin, which needs
not be considered here (see below). Each time a new plan arrives on the synchro-
nization peer it is merged with existing data, processed and the revision number in-
cremented. The final revision contains all plans produced by the operator preceding
ParallelRanking, so the revision number will be equal to this number. Thus, ques-
tion (1) becomes equivalent to (2). To determine the final revision number, the number
of plans generated by the preceding operator must be estimated11.

(2) Plan duplication can happen in two ways. First, a plan can be sent to multiple
peers with a prefix query. The sender does not know how many peers will receive the
plan because P-Grid’s routing layer does not provide this information, but peer heart-
beat messages from the recipients could be counted on the initiator to estimate this
number12. Second, plan cloning can be used to generate a set of plans on one peer
and route them, so the sender knows the number and can send it to the initiator. The
third approach for parallelism, parallel processing of join branches, does not need to be
considered here. While it duplicates the query plan on the initiator, this is offset when
the copies are literally “re-joined” by ParallelJoin later on.

Fig. 6.15 shows an example query plan using four prefix query operators13 and fig. 6.16
depicts the execution without any errors, including heartbeat messages14. Multiple
messages between peers are indicated by a number. The ParallelExtract AV index
is stored on 2, the first ParallelAVMaterialize index on 2 and the second on 3 peers,
and a total of 20 peer heartbeat messages are sent to the initiator15. They contain the
peer’s path and the GUID of the active operator, so for each prefix query operator the
number of involved peers can be determined by counting the distinct peers as identified

11this operator itself does not have to be a parallel operator – in this context, it simply means that it
generates multiple plans for the same query, which can also be caused by a preceding parallel operator
lower in the plan

12it is an estimation because heartbeats might get lost and peers can fail after sending them without
forwarding the query plan

13ParallelAVMaterialize can only fetch one attribute, so two instances must be used
14as in fig. 6.7, operators are associated with the peers where they do their relevant processing, but they

also run on other peers – for example, ParallelExtract also runs on the query initiator
15note that ParallelRanking generates 2 revisions, which are completely evaluated and also generate

heartbeat messages each, hence the high number

61

6 Execution Engine

by the path. This eliminates the duplicate messages generated by the processing of
the different revisions.

Parallel-

AVMaterialize

ParallelExtract

ParallelRanking

Projection

Parallel-

AVMaterialize

Figure 6.15: Example prefix query plan

The query initiator can now answer the two questions posed using this information
and the structure of the query plan. Only one parallel operator is processed before
ParallelRanking and it is known that it will produce two concurrent query plans, be-
cause two heartbeat messages arrived from the peers responsible. Both plans are
forwarded to the ranking peer, which produces a new revision for each one, with the
second containing the data from both plans. After that, two parallel operators again
cause duplication. Both of the first two ParallelAVMaterialize peers send each plan
revision to all three peers of the second ParallelAVMaterialize for 6 total plans per
revision. The initiator therefore knows that 12 plans will arrive and those with revision 2
are final.

For plan cloning operators a different approach is used. Fig. 6.17 shows a plan with a
ParallelOIDMaterialize cloning operator. First, the plan is routed to the peers storing
the AV index for the extraction attribute. This generates 2 peer heartbeat messages.
ParallelOIDMaterialize is executed next. It generates 3 and 2 messages on the
peers and sends a feedback message to the initiator with this information, which adds
them up to determine the number of concurrent plans16. The initiator can determine

16operators which split the plan recursively multiple times (currently only ParallelQgramExtract) can also
be handled, but are not considered here

62

6 Execution Engine

Parallel-

Extract

Parallel-

Ranking

ParallelAV-

Materialize

ParallelAV-

Materialize,

Projection

Query Initiator

Query plan message(s) Heartbeat message(s)

2

2

2
2

2

2

2

2

2

4

4

4

4

4

4

2

2

Figure 6.16: Messages and heartbeats sent during parallel query execution

63

6 Execution Engine

that it must wait for two feedback messages by examing the received information (peer
heartbeats or plan cloning feedback) from the preceding operators in the plan (only
ParallelExtract in this case).

Parallel-

Extract

ParallelOID-

Materialize,

Projection

Query

Initiator

Query plan messages Heartbeat messages

Query

Initiator

2

Parallel-

Extract

Projection

Parallel-

OIDMaterialize

Plan cloning feedback

Figure 6.17: Example plan cloning query plan

Not all peer heartbeats are depicted in fig. 6.17. The peers storing the OID index also
send them, and they can also be used in this case for completeness estimation. In
practice it would be best to switch them off for plan cloning operators and use the above
approach as it generates less messages.

Fig. 6.18 shows the algorithm for estimation of the final revision and number of result
plans (estimateStatus()). It assumes that each operator stores peer heartbeat or plan
cloning feedback information. It simply uses the available information and does not wait
until all feedback messages have arrived, but this can also be implemented using the
central maxMessages() method on subplans in the way described above.

Waiting with a timeout is still required. Consider the prefix query example plan in
fig. 6.16. When a plan is received on one of the final ParallelAVMaterialize peers it
will send out the heartbeat, process the plan and send the result to the initiator. There-
fore, heartbeat and result will arrive at about the same time – the result may even arrive
first. The problem is that heartbeats are sent relatively late – only when the operator

64

6 Execution Engine

void estimateStatus(Plan p) {
(subplanAboveRanking, subplanBelowRanking) = splitPlanOnRanking(p)
revision = maxMessages(subplanBelowRanking)
plans = maxMessages(subplanAboveRanking)
...

}

int maxMessages(Plan p) {
i = 1
Operator[] opQueue = p.postOrder()
for (op in opQueue) {

if (op.type == PLAN CLONING) {
// calculate number of plans at this point from
// received feedback messages
msgs = op.getPlanCloningFeedbackMsgs()
i = 0
for (m in msgs) {

i += m.getNumClonedPlans()
}

} else {
// a prefix query simply multiplies the number of plans by the
// number of peers storing the index - each sends a heartbeat
i = i * op.getNumPeerHeartbeats()

}
}
return i

}

Figure 6.18: Estimating the number and final revision of result plans

65

6 Execution Engine

is already running – and to make sure to receive all of them, a timeout must be used
again. ParallelRanking mitigates this problem because earlier revisions will be pro-
cessed and the corresponding heartbeats sent, allowing the initiator to acquire knowl-
edge about the number of peers at each level . When the final revision is processed, it
is very likely that all heartbeats from the first revision have arrived. The initiator already
has a good estimate for the number of plans based on the early revision and does not
have to wait for the heartbeats of the final revision. For plan cloning operators only the
feedback messages of the final revision provides accurate information, but the number
of generated plans can be sent to the initiator before sending them to the peers for
processing, so it will arrive earlier than the results and the timeout can be lower.

Prefix Probing

The previous approach showed that acquiring knowledge early is important so timeouts
do not have to be used to wait for feedback. Prefix probing adheres to this by acquiring
information about prefix operator peers at the beginning of the query.

The technique is illustrated in fig. 6.19. The initiator first sends out a new type of prefix
query message for every prefix query operator, addressed to the prefix it operates on.
Each peer receiving it answers to the initiator, which can count the number of peers,
similar to the peer heartbeat approach above. At the same time the query is started.
Because the probing is done in parallel and at the beginning, not during query execu-
tion, the number of peers each operator is processed on will be known early and there
is no delay for operators at the top of the plan. The number of expected plans can be
calculated from this and should be relatively stable when the first result plans arrive,
so a progress indicator could be displayed. After the estimated number of plans have
arrived it is safe to end query execution without further waiting. This approach can not
be used for plan cloning operators as is, because the number of plans generated will
only be known during processing, but the aforementioned solution of sending feedback
messages during processing to the initiator can be applied. When the operator occurs
at an early point in the operator queue (i.e., at the bottom of the plan), the information
will arrive in time and no long timeout is necessary. The methods in fig. 6.18 are also
used for estimations.

66

6 Execution Engine

Parallel-

Extract

Parallel-

Ranking

ParallelAV-

Materialize

ParallelAV-

Materialize,

Projection

Query Initiator

Probing message Probing reply

Figure 6.19: Determining the number of peers with prefix probing

67

6 Execution Engine

Plan Tagging

In this third approach, no additional messages are sent. All information about the ex-
ecution of the query is stored in the plan. Each prefix operator in each plan is tagged
with the path of the peer that processed it. The initiator extracts the information from the
incoming result plans and determines the number of distinct peers for each operator. If
there are no plan cloning operators in the plan, the product of the peer counts equals
the number of results. Plan cloning operators can also be handled. Instead of sending
a feedback message as above, the number of generated plans is simply stored in the
plan associated with the operator. In contrast to the heartbeat approach, there is no
feedback until the first plan arrives. When the plan contains a blocking operator but
no plan cloning operators this is no problem, as the information obtained from earlier
revisions can be used as described in sec. 6.5.2. The peer numbers will be known
when processing of the final revision is underway. For other plans one of the other
approaches is better suited.

Fig. 6.20 illustrates tagging for prefix query operators. Letters have been used to repre-
sent the distinct paths of the peers. The AV index for ParallelExtract is stored on two
peers A and B, for ParallelAVMaterialize on C, D and E. Therefore, each plan will
pass through A or B and after that either through C, D or E, yielding 6 possible combina-
tions of tags, one attached to each of the result plans sent to the initiator. When plans
B-D and B-E arrive, it is known that there is at least one extraction and two material-
ization peers. If A-D arrives next, it is clear that one more peer exists at the extraction
level and another plan A-E must also exist. This way, a lower bound can be determined.
Fig. 6.18 can be used for estimation once the relevant information has been extracted
from the result plans (distinct paths correspond to the peer heartbeats).

Discussion

All three methods can be implemented with relatively little overhead. Few information
needs to be transmitted, so the increase in bandwidth is negligible. The additional mes-
sages received in the first two approaches might place some load on the initiator, so
tagging can be a better choice. Tagging and initiator feedback should perform reason-
ably when a blocking operator is present. Prefix probing is expected to perform best.
For plans with blocking operators it also generates less traffic than initiator feedback,
because it only queries prefix query operators once, while heartbeats are sent for ev-
ery revision. Plan cloning operators are the bottleneck for all three approaches. As the
number of generated plans is only known at processing time, the generated estimations

68

6 Execution Engine

Parallel-

Extract

ParallelAV-

Materialize,

Projection

Query

Initiator

Query Plan Message(s)

Query

Initiator

A
C

E

B

D

AC

BC

BE

AE

BD

AD

Figure 6.20: Tagging plans to estimate the number of result plans

are often “late”, because feedback messages and results arrive at about the same time.
A test implementation could provide good insights into the general applicability of these
approaches in a real-world system.

6.6 Summary and Outlook

Serial and parallel plan execution strategies based on the idea of Mutant Query Plans
have been presented in this chapter. Initial tests show that they perform well in a P2P
setting. In the future, plan execution should become even more flexible. The postorder
approach has already been extended by parallel processing of binary operators. In
addition, each peer should be able to decide on its own where to route the plan next,
for example by consulting local statistics. It should also be possible to rewrite the plan
locally. Three possible approaches for this are presented in [PM02a]: consolidation,
absorption and deferment. Using properties of the logical operators like associativity
and commutativity, they restructure the plan for earlier or later processing of operators,
thus reducing the size during transmission. For example, a cartesic join will increase
the size and it is usually better to just store the data of both sides and delay processing
as long as possible. To increase parallelism and lower latency in cases where local
processing takes long a plan can be fragmented: instead of waiting for the completion of

69

6 Execution Engine

a given operator on all tuples, a plan fragment is forwarded for each n tuples processed.
More details on this pipelined parallelism-approach can also be found in [PM02b].

70

7 Operators

This chapter deals with the physical operators available in CouPé. The first section re-
views their general properties. Next, each operator is examined in detail. One section
focuses on the local operators which do not need to be routed, a second on DHT oper-
ators which are further categorized into serial and parallel operators. With all operators
known the available query planners for mapping logical to physical operators are doc-
umented. Possible extensions to the available implementations, including aggregation,
are discussed last.

7.1 Overview

A physical operator as available in CouPé is executable code and stores jtuples pro-
cessed by itself; interfaces are provided for the parent operator to access them. In
addition to data processing, operators perform routing and plan modification tasks. An
operator might have to visit a number of peers, and it must control this process by
specifying the destination peers. A state machine keeps track of this internally. All in-
ternal data structures are transmitted as part of the serialized query plan. Note that the
code itself need not be included, only the types of the objects used need to be stored
because the code itself is available on all peers.

Jtuples (sec. 4.2.2) have been used to preserve the structural relationships between
triples established by the operators. Equivalent data structures in the operators can
store them. Furthermore, each operator must know which component of a jtuple to pro-
cess. This is specified by the VQL notation (sec. 4.2.3) and can generally be any OID,
attribute or value. Query planners parse this information and pass it to the operators
when instantiating them (sec. 5.3). The implementation supports string, integer and
float data. Only the first two are used in this work. If the data types do not match, the
offending jtuples are silently discarded.

71

7 Operators

7.2 Local Operators

The operators presented in this section only operate on the jtuples supplied by their
child operators. They do not cause routing of the plan and do not access the local
storage.

LocalSelection This implementation of the logical Selection operator supports all op-
erations: <, >, =, ≤, ≥, 6= and ∼ (similarity). In addition to this the argument for
comparison, in the case of a similarity selection the maximum distance, and the com-
ponent to process must be specified. For each jtuple provided by the child operator the
component is extracted and the operation evaluated. The selected jtuples are stored in
the operator.

LocalJoin This operator evaluates joins with a simple nested loop. For both sides the
jtuple components to compare must be specified. This is usually a value or attribute
component (instance/schema level operation). The two sides can operate on different
levels. For each jtuple combination the specified comparison operation is evaluated.
The same operations as for LocalSelection are supported, including similarity joins. A
cartesic product can also be generated. Lastly, VQL allows the specification of multiple
conjunctive predicates for one Join and this operator provides a short-circuiting AND
implementation for this. Jtuples from both side are combined to a new jtuple while
retaining all of their data as required (sec. 4.2.2).

LocalRanking The LocalRanking operator is the most complex of all, as it has to im-
plement the three different ranking functions Minimum, Maximum, Nearest Neighbor
and additional LIMIT/OFFSET clauses. For all three functions the component of the jtu-
ple on which to operate must be specified. Nearest Neighbor accepts two additional
parameters: the reference object (a string or integer) and optionally a maximum dis-
tance l. For each candidate jtuple the difference d to the reference object is computed.
For numbers this is the euclidian distance, for strings the Levenshtein edit distance. If
d > l, the jtuple is discarded. All remaining jtuples are sorted in ascending order on
the distance. Minimum and Maximum sort all the jtuples of the child operator by the
component specified.

When multiple functions are specified they are evaluated in a nested fashion: the first
function is evaluated as usual. The next function is computed on isolated blocks of data

72

7 Operators

where the component on which the first function sorted is equal. Therefore, it is ensured
that the sorting order of this component is not changed by the succeeding function. The
next function will keep the components sorted by the previous two functions intact, and
so on.

After sorting the LIMIT and OFFSET clauses are evaluated. OFFSET skips the specified
number of jtuples starting from the beginning, LIMIT cuts off all jtuples beyond a certain
number. Lastly, each jtuple in this sorted list is numbered. This preserves the order
in cases where the plan is split by subsequent parallel operators and must be merged
again on the initiator, which can determine the correct order by the numbers. As only
one Ranking will appear in VQL plans, this solution is sufficient.

Projection Projection is the operator at the top of the tree. It is different from other
operators because it stores the generated data – the result of the query plan – in a
special format similar to the tabular structure of SQL results instead of jtuples. A list
of components to extract from each jtuple must be specified. A component can be an
OID, attribute or value. They are extracted and the result is generated. Each jtuple
corresponds to a row and each component to a column.

7.3 DHT Operators

The operators in this section use the DHT for routing, most also retrieve data from it.

7.3.1 Serial Operators

All operators without intra- or inter-operator parallelism are considered serial operators.
They route the plan sequentially from peer to peer without any plan duplication.

Extract This operator extracts triples from the DHT using the AV index (sec. 4.1.1). It
can perform three operations:

• fetch all triples (routeKey =′′, an empty key)

• fetch all with attribute att (routeKey = h(att))

73

7 Operators

• fetch all with attribute att and value val(“direct key lookup”,
routeKey = h(att) ◦ h(val))

First, routeKey is calculated and the plan sent there. If the receiving peer’s path
localPath ⊆ routeKey, all requested data resides there. Otherwise, the peer is just
a member of a subtree of peers whose paths have routeKey as prefix, and all others
must be contacted as well. Therefore, all other possible peers’ paths are generated and
routed to, but not all of them must exist. On the other hand, each path can be a tree
again, so this process must be repeated recursively. The algorithm for this is shown in
fig. 7.1. The recursion is implemented with a routing queue.

Fig. 7.2 shows a virtual P-Grid tree and the processing of Extract on an attribute
which hashes to routeKey = 1. The three red peers must be contacted to gather all
data. Initially, the routing queue contains only 1. process() is invoked and the plan
is sent to this key, but no exact-matching peer exists. P-Grid will send the message
non-deterministically to one of the red peers in this case. Assuming it will be peer
110, the operator detects that the local path is longer than routeKey. It generates the
remaining paths by keeping the first bit as specified by the routeKey constant while
permutating the remaining two to yield paths 100, 101 and 111 which are scheduled for
routing while 1 is removed from the queue. The plan is next routed to 100 and reaches
peer 10. In addition to 100, 101 can also be eliminated from the routing queue as 10 is
also responsible for this prefix. Processing ends at peer 111.

This way the expected cost for Extract is O(m ∗ logN) for N total key space partitions
and m key space partitions responsible for the data requested. For a direct key lookup,
m = 1 when the hash function generates keys which are longer than the longest path in
the network (an implicit requirement of P-Grid). The expected number of participating
peers can be used to determine the maximum possible path length.

OIDMaterialize This operator utilizes the OID index (sec. 4.1.1), parameters are the
attributes to add to each jtuple. It is also possible to fetch all available attributes without
naming them, which is required by some VQL queries. For each jtuple supplied by the
child operator the plan is routed to k = h(OID). Multiple OIDs can be part of one jtuple
(for example, after joins), so the correct one must be identified by the query planner.
The “prefix problem” illustrated above also applies here – it can happen that multiple
peers are responsible for k when the keys generated by the hash function are not long
enough. In this case all other peers are contacted as a workaround, but the better
solution is to adjust the hash function1.

1requiring the rebuilding of the grid

74

7 Operators

// the paths that still need to be processed
// are queued up here

// initialized with the hash key of the
// attribute to extract
String[] pathsToRoute = [h(att)]

void process() {
while (pathsToRoute.length > 0) {

String routeKey = pathsToRoute[0]
routeTo(routeKey)

// check the path of the peer we arrived at
localPath = PGrid.getLocalPath()
if (localPath.length > routeKey.length) {

// local peer part of a tree
// generate all other possible peer paths and schedule for routing
pathsToRoute.add(getAdjacentPaths(routeKey, localPath))

}
// remove all paths which this peer is responsible for,
// so we do not route there again
for (path in pathsToRoute) {

if (path.startsWith(localPath)) {
pathsToRoute.remove(path)

}
}
// extract triples from av index
Triple[] t = tripleMgr.getTriples(h(att), "av")
...

}
}

String[] getAdjacentPaths(routeKey, localPath) {
// determine the common prefix of routeKey and localPath
// keep it constant in localPath, generate all permutations of
// the remaining bits and return these paths except for localPath,
// which has already been contacted
...

}

Figure 7.1: Routing algorithm for Extract

75

7 Operators

(2) pathsToRoute: 100, 101, 111

111110

10 1100 01

0 1

(1) pathsToRoute: 1

(3) pathsToRoute: 111

Figure 7.2: Example: virtual P-Grid tree and processing of the Extract operator

OptOIDMaterialize One peer may store Materialization data for multiple jtuples. When
they are not stored adjacently in the child operator, OIDMaterialize will route to the
same peer twice or more. For example, if peer A is responsible for jtuples 1 and 3,
peer B for jtuples 2 and 4, the plan would be routed to A, B, A and B. OptMaterialize
removes this inefficiency by contacting a minimal number of hosts only.

QgramExtract This operator implements similarity search on strings using the q-gram
indexes described in sec. 4.1.2. The Value similarity index is not used in this work, but
it is relatively easy to extend this operator to handle it as well. Parameters are the
search string s from which the edit distance to the candidates will be calculated and
the maximum distance d (an integer). Furthermore, the attribute whose values should
be searched can be specified and the AV similarity index (instance level) is used in this
case. Otherwise, a search on the attributes themselves is performed using the Attribute
similarity index (schema level).

The basic algorithm for q-gram search has been described in detail in sec. 4.1.2 and will
only be summarized in the following. First,the search string s is converted to lower case
to perform a case insensitive search (q-grams indexes are also stored in lowercase).
d+1 non-overlapping q-grams qi are generated from it as described in sec. 4.1.2. If the
string is too short, all (overlapping) q-grams are extracted instead, which might not be
able to find all results. Each q-gram is hashed to P-Grid keys, producing ki = h(att) ◦
h(qi) or ki = h(qi) for instance and schema queries, respectively. Finally, duplicate keys

76

7 Operators

are eliminated, the plan is routed to those remaining and the data stored on the peers
is extracted. Similar to OptOIDMaterialize, all other keys scheduled for routing are
also processed when they are stored on the peer. This is the case when the peer’s
path is a prefix of the key. The “prefix problem” and its solution (sec. 7.3.1) also apply
here. Different q-grams may reference the same triple, so a set is used as internal data
structure to prevent duplicates.

Up to now, false positives have not been eliminated. Q-gram results must always be
post-processed to eliminate them. However, it would not make sense to implement this
filtering functionality again, as it is already available in a more generalized form in the
LocalSelection operator. The forward processing approach presented in sec. 6.3.1
comes in handy at this point. QgramExtract can simply be combined with a filtering
LocalSelection on top, yielding one virtual operator. Each time QgramExtract has
fetched data on a peer, LocalSelection is immediately processed to drop any false
positives. This reduces the size of the plan just before it is sent to the next peer.

Further optimizations are possible. The q-gram generation algorithm should supply the
q-grams with the lowest selectivity to reduce the size of intermediate results generated,
even if these results are only processed locally. Non-deterministic generation could be
used to randomly create different q-gram sets for a search string and thus balance load
among the peers storing the index. Also, more than d + 1 q-grams could be used for
redundancy, combatting the failure of peers.

7.3.2 Parallel Operators

Parallel operators make use of prefix queries (sec. 6.4.1), plan cloning (sec. 6.4.2) and
parallel execution of operator branches (sec. 6.4.3) for concurrent processing.

ParallelExtract This is the parallel version of ExtractOp with the same functionality.
Prefix queries are used to parallelize execution: instead of sequentially routing the plan
to all peers responsible, P-Grid’s routing layer automatically does this in parallel. For an
attribute stored on n peers as many plans are sent.

ParallelOIDMaterialize This is the combination of OptOIDMaterialize and plan cloning,
the parameters are identical. For every jtuple supplied by the child operator, the appro-
priate OID is hashed to k = h(OID) and a new plan containing only this jtuple is routed

77

7 Operators

there. From this point on all these parallel plans are processed like in the serial version:
when k addresses a subtree, the plan is routed to all other peers in it. This can not be
done in parallel because attributes might be stored on different hosts and splitting the
plan at this point would not correctly materialize the jtuple. The operator should be used
in cases where many attributes need to be materialized at a time (which will very likely
be stored on the same peer) and the number of jtuples is low.

ParallelAVMaterialize This variant uses prefix queries for parallelism. Unfortunately
it is not possible to pose a meaningful range query on the OID index. Instead, the AV
index is used in the same way as for ParallelExtract: the plan is routed in parallel to
all peers of the required attribute, k = h(att). At each peer, the child operator in the plan
contains all data to be materialized. But only those with local Materialization partners
can be processed. All others are removed from the plan, but as the AV index contains all
triples for the requested attribute, it is ensured that they will be processed on one of the
other peers. The drawback is the overhead incured by shipping all jtuples in the child
operator to all peers. Furthermore, only one attribute can be materialized at a time this
way, in contrast to operators using the OID index. Materialization of multiple attributes
is handled by multiple ParallelAVMaterialize in sequence, but the case where all
available attributes must be added without naming them cannot be handled.

This operator is ideal if only a few attributes need to be materialized, or if the number of
tuples is high and each one is relatively small. In this case the bandwidth overhead is
no big drawback, but the speedup is substantial, because there is no need to route to
many peers in sequence (OptOIDMaterialize) or to create a plan for each jtuple with
substantial overhead (because the jtuples are small – ParallelOIDMaterialize).

ParallelRanking When parallel operators are used, synchronization must happen be-
fore Ranking can be evaluated (sec. 6.4.1). While the execution engine handles the
merging of plans, it is the responsibility of the operator to route to a synchronization
peer first. As pointed out in sec. 6.4.1, this peer cannot be specified by a P-Grid path
because of replication. Therefore, a concrete peer is addressed – which can be different
for every query – and its IP address and port are additional parameters of this operator.
In all other aspects ParallelRanking is identical to LocalRanking (sec. 7.2).

ParallelJoin This operator extends LocalJoin with synchronization before processing
happens. The coordination peer is specified by IP address and port. The plan is routed

78

7 Operators

there and the execution engine handles merging with other parallel plans. This process
is explained in detail in sec. 6.4.3.

Note: Both ParallelRanking and ParallelJoin extend existing operators with syn-
chronization. This functionality could be outsourced to a separate operator which
is then inserted before LocalJoin or LocalRanking operators. Due to time con-
straints this was not implemented.

ParallelQgramExtract This parallel variant is similar to QgramExtract and is also used
in conjunction with a filtering LocalSelection on top (sec. 7.3.1). Instead of routing to
the q-gram hashes in sequence, one plan is generated and routed in parallel for each.
Due to the “prefix problem” further routing might be required. It is handled similar to the
solution described in sec. 7.3.1 – all other peers are also routed to – except that the
messages are sent in parallel again. This process is repeated recursively if necessary,
leading to a tree-like dissemination of messages. Parallel q-gram processing leads to
duplicates. For the search for “mistake” with d = 1 in fig. 4.4, two q-grams “$mi” and
“sta” are generated. Triple 1 is associated with both of these q-grams. The operator
generates two messages and both will fetch the triple. This can be solved by filtering
the final result at the query initiator for duplicates.

ParallelQgramJoin Consider the plan depicted in fig. 7.3 where a similarity join needs
to be processed. One subtree contains just an Extraction. Without loss of generality it
is assumed to be the right subtree, as the child operators can be swapped. The data
processed by the Join (a and b) is fetched in the left and right branches, respectively. It
can be data on instance (values) or schema level (attributes). The left side will be eva-
luted before the right side in the basic M2QP approach. Therefore, instead of fetching
all data referenced by b and processing the Join on it, a ship where needed-approach
becomes possible, which uses the data available in the left branch together with infor-
mation from the Join predicate to directly ship tuples to peers where results can be
expected.

Joina~b, d

... Extractionb

Figure 7.3: A logical plan containing a similarity join

79

7 Operators

LocalJoina~b,d

... P.QgramJoinb,d

Figure 7.4: The plan before the start of execution

LocalJoina~b,d

... QgramExtractb,s,d

Figure 7.5: A plan generated by ParallelQgramJoin

ParallelQgramJoin implements this by instantiating the right-side Extraction. It is ini-
tialized with the data it should fetch (b) and the similarity distance d of the Join op-
eration. All other operators are also instantiated. The resulting generic query plan
is shown in fig. 7.4. Processing starts and the left side is evaluated before control is
passed to ParallelQgramJoin, which requests the jtuples ti stored by the left child
operator of LocalJoin. For each one the query plan is cloned, modified and returned
to the execution engine for routing. One of these new plans is depicted in fig. 7.5.
ParallelQgramJoin is replaced by QgramExtract with the parameters b, s and d. s is
the search string extracted from the jtuple ti (an attribute or value, i.e., the component
addressed by a). At this point, ParallelQgramJoin is finished and in all the cloned
plans execution continues with QgramExtract, which routes the plan to all peers where
it can fetch matching data for the provided s. In contrast to the usual application of the
q-gram operators it is not necessary to use an additional LocalSelection operator, as
LocalJoin will filter out any mismatching tuples anyway.

This operator is particularly efficient when the left side contains relatively few tuples, or
the data referenced by the right-side Extraction is extensive. Instead, few tuples are
shipped to the matching data, saving bandwidth. It can also be used for equijoins as
a side effect, because q-grams can also be used for exact matching. While only string
data is handled, it can easily be extended to integers (sec. 7.6.2). Furthermore, this
technique can be applied to more complex query plans with operators on top of the
right-side Extraction, but preceding Join, for example a Selection.

Schema similarity joins are the most important application for the operator. All triples
in the network would have to be fetched on both sides of the join, which is impossible

80

7 Operators

LocalJoina~b,d

P.QgramExtractb,t(i),d

<45;’dname’;’VW Meier’>

<2;’dname’;’Auto Wagner’>

<4;’name’;’Mueller’>

<7;’name’;’Schmidt’>

LocalJoina~b,d

QgramExtractb,dname,d<45;’dname’;’VW Meier’>

<2;’dname’;’Auto Wagner’>

LocalJoina~b,d

QgramExtractb,name,d<4;’name’;’Mueller’>

<7;’name’;’Schmidt’>

Plan Cloning

Figure 7.6: Similarity join on schema level using ParallelQgramJoin

in most cases. ParallelQgramJoin provides a substantial improvement over this. As a
further optimization, identical attributes or values can be grouped together and sent in
one plan. This reduces the number of messages by a large amount. Fig. 7.6 shows an
example for a similarity schema join. The left side of the plan (referenced by a in the
join) contains all triples with an attribute similar to name which should be joined against
all other triples in the network on attribute level with distance d. To efficiently process
this query, the data on the left is grouped by attributes and two distinct plans with the
two distinct search strings dname and name are created. QgramExtract will operate on
the Attribute similarity index to find matches.

ParallelQgramJoin2 This is the same as above, but for further parallelism, ParallelQgram
is substituted instead of the serial version. This can cause duplicates (sec. 7.3.2).

7.4 Query Planner Operator Mappings

Table 7.1 gives an overview of all available query planners and how they map logical to
physical operators. A parent-child operator relationship is denoted by “Parent + Child”.

81

7 Operators

In the case of forward processing, “◦” is used instead. For layout reasons, “Parallel” is
abbreviated by “P.”, “Local” by “L.” in some cases.

The basic planner has already been mentioned. It instantiates all operators with serial
variants and is usually applied last to give other planners a chance to apply their map-
pings and also to ensure that all operators are resolved. There are different physical
mappings for Extraction, depending on the scope (instance or schema level). When
an equi Selection on the extracted data follows, a “direct key lookup” operation can also
be used which will usually find the results in O(logN) time (sec. 7.3.1). The q-gram
planners must handle different logical operators for similarity operations on instance on
schema level. In the latter case, Extraction contains the predicate, in the former an ad-
ditional Selection must be parsed. The parallel planner combines three others for conve-
nience and backward compatibility. ParallelQgramJoinOp and ParallelQgramJoinOp2
can be considered hybrid operators because they implement aspects of Extraction and
Join. Nevertheless, their main task is data localization, and in the plan they are also
substituted for Extraction, so they have been associated with this operator. No planner
is provided for ParallelJoin. It did not fit the existing framework as the plan must be
cloned on the initiator, but query plans using it can easily be constructed with few lines
of code, which is sufficient for this work.

All in all, these planners can be used for a very modular and flexible query planning pro-
cess. For a given plan, different ones can be applied and tested with ease. Serial and
parallel operators can be freely combined. These features make a thorough evaluation
of the execution engine and the operator implementations possible, but also provide
enough leeway for future extensions.

7.5 Building Custom Query Plans

When functionality which is not yet expressable in VQL (for example, a new operator)
should be tested or when special techniques like ParallelJoin need to be used it is
often easier to construct a plan by assembling operators with a few lines of code than to
implement a custom planner. All required operators can simply be instantiated with the
required parameters and then linked together. The root operator, which references the
plan, is passed to the execution engine for processing. It is also possible to pre-load
data in Extract which will be processed by the parent operator immediately. This is
used in one test in chapter 9.

82

7 Operators

Query Planner Logical Operator Physical Operator
Basic Extraction Extract

LocalSelection ◦ Extract1
Extraction + Selection Extract2

Materialization OIDMaterialize
Selection LocalSelection
Join LocalJoin
Ranking LocalRanking
Projection Projection

ParallelExtract Extraction ParallelExtract
LocalSelection + P.Extract1

Extraction + Selection ParallelExtract2

OptOIDMaterialize Materialization OptOIDMaterialize
P.AVMaterialize3 Materialization ParallelAVMaterialize4

P.OIDMaterialize Materialization ParallelOIDMaterialize
ParallelRanking Ranking ParallelRanking
Qgram Extraction5 L.Selection ◦ QgramExtract

Extraction + Selection6 L.Selection ◦ QgramExtract
ParallelQgram Extraction5 L.Selection ◦ P.QgramExtract

Extraction + Selection6 L.Selection ◦ P.QgramExtract
ParallelQgramJoin Extraction ParallelQgramJoin
ParallelQgramJoin2 Extraction ParallelQgramJoin2
Parallel combines the planners for

ParallelExtract, ParallelAVMaterialize
and ParallelRanking

- Join ParallelJoin

Table 7.1: Implemented query planners and their mappings
1 for similarity Extraction on the attribute
2 “direct lookup” – for Extraction of a concrete attribute followed by an equi selec-

tion on the values
3 can only be used if the attributes to be materialized are known by name, see

sec. 7.3.2
4 one physical operator for each attribute
5 for a similarity Extraction on the attribute
6 for an Extraction of a concrete attribute followed by a similarity or equi string
Selection on the values

83

7 Operators

7.6 Future Work

This section discusses ideas for new operators and suggests improvements for existing
ones which have not been implemented yet.

7.6.1 Grouping/Aggregation

One important feature currently missing is grouping in conjunction with aggregate func-
tions. VQL does not yet support this, but it should be easy to implement at the language
level, for example like this:

SELECT x, AVG(y) where { <o;’name’;x> <o;’len’;y> } GROUP BY x;

x is the grouping variable, AV G one example of an aggregation function f and y its
input. Only operations on the instance level will be considered, but the aggregation
function could be easily extended to process attribute and OID data as well. Minor
modifications must be made to the way jtuple data is stored in the operators, so the
semantics of groups can be represented efficiently.

For the serial strategy, it is only necessary to fetch the involved triple data before pro-
cessing grouping and aggregation. Fig. 7.7 shows a serial example query plan. For the
parallel strategy, three different solutions will be discussed next.

Extractx

Aggregationf(y)

Groupingx

OptOIDMaterializey

Figure 7.7: Aggregation using the serial strategy

84

7 Operators

To correctly process aggregations, all data for a group must be available on one peer,
which can be achieved by explicit synchronization or by using an index that already
stores the data clustered correctly. The AV index is the logical choice for the latter.
The query plan in fig. 7.8 uses this approach. ParallelExtract fetches x, and it is
ensured that triples with the same values are on the same peer because they have
identical hash keys – the data is already grouped. The grouping operator must only
rearrange the data to fit the internal representation. Next, the second attribute must
be materialized. Using ParallelOIDMaterialize would destroy the groups, therefore,
ParallelGroupMaterialize is introduced. For each group it generates a message
containing the corresponding jtuples and materializes y on each sequentially, therefore
keeping the groups intact. After that, aggregation is performed. This results in as many
messages as there are groups.

ParallelExtractx

Aggregationf(y)

Parallel-

GroupMaterializey

Groupingx

Figure 7.8: Aggregation using the AV index

ParallelExtracty

Aggregationf(y)

Parallel-

OIDMaterializex

Groupingx

SynchronizePeer

Figure 7.9: Aggregation using synchronization

85

7 Operators

This approach might not be feasible when there are large groups, because sequentially
materializing the jtuples will take long. The alternative is to use ParallelOIDMaterialize
and synchronize later. This is shown in fig. 7.9. The Synchronize operator simply
routes the plan to a predetermined peer where it is merged with previously received
plans and processed further. An incrementing revision number is used to distinguish
results. This is the same principle used for ParallelRanking (sec. 6.4.1) and places
the load on a single peer. Multiple peers could be used as long as it is ensured that
tuples with identical grouping values are routed to a common peer (performing grouping
via routing), so all values for the aggregate are available. It is not possible to hash the
values to a P-Grid key and route to the peer responsible because of P-Grid’s replica-
tion (sec. 6.4.1). To work around this, a number of peers can be stored in the query
plan by IP address and randomized hashing on the values can be used to generate an
index into this list and route to the corresponding peer. This way, identical values will
be processed on the same peer, and processing and network load will be balanced.
Note that the variables can be swapped so that ParallelExtract is performed on x
and ParallelOIDMaterialize on y.

It is also possible to implement grouping/aggregation using an extended version of
ParallelAVMaterialize. This is useful when the plan contains few groups with many
jtuples in each, which would lead to long processing in the first and message overhead
in the second approach. Fig. 7.10 depicts an alternative query plan, first extracting the
aggregation attribute y and then materializing x, so y data is shipped to the AV index
peers for x, where the data is already clustered. ParallelAVMaterialize is extended
by online processing as used in ParallelRanking and collects all jtuples received from
the extraction peers to calculate the aggregate. Fig. 7.11 shows an example with two
peers at each level: peer A sends the single len triple it stores to C and D. D discards
it, but C is able to materialize name. B sends two jtuples to C and D. One can be used
to complete the “E.T.” group on C and calculate the aggregation on len. The same is
true for peer D (in this simple example the group contains only one element).

It might seem easier to extract x and materialize on y, but this is not possible. The
triples from peer C would be materialized on separate peers (A and B) because of a
different distribution of the len AV index, thereby destroying the group.

7.6.2 Other New Operators

Integer Range Queries These queries are used to find data in a particular euclidian
distance to a reference. They can be used to speed up integer Nearest Neighbor −
Rankings when a maximum distance has been specified, or for conjunctive FILTER

86

7 Operators

ParallelExtracty

Aggregationf(y)

OnlineParallel-

AVMaterializex

Groupingx

Figure 7.10: Aggregation with synchronization on the materialization peers

C

B

A

D

Parallel-

Extractlen

Query

Initiator

Query

Initiator

Query plan message(s)

<1;’len’;10>

<2;’len’;9000>

<3;’len’;9002>

<1;’name’;’E.T.’>

<2;’name’;’E.T.’>

<3;’name’;’Saw’>

OnlineP.AVMaterializename

Groupingname
Aggregationlen

Figure 7.11: Example triple distribution (third approach)

87

7 Operators

clauses on the same variable which form ranges (for example, FILTER x > 10 FILTER
x < 20). The hash function for integers maps them to their binary representation (lim-
ited to 31 bit). This makes it possible to use P-Grid range queries to extract all relevant
data. Indexes which can be queried this way are the AV index and the Value index.

Substring Search q-gram indexes can be used for substring search. Only one q-gram
from the substring needs to be hashed and looked up, the one with the lowest selec-
tivity should be chosen. In this case, no post filtering must be applied. The existing
QgramExtract and ParallelQgramExtract operators could handle this new operator
with minor modifications. The VQL syntax must be extended to include this new opera-
tion.

SerialAVMaterialize The serial strategy only uses the OID index for Materialization.
However, for a plan with many tuples the AV index might perform better. The OID index
is usually distributed over more peers than the AV index, so shipping the plan to them
takes longer and utilizes more bandwidth. Instead, the AV index should be used as for
the Extract operator: the plan is sent to each of the peers storing data of the index, and
the available triples are materialized. Only one attribute can be materialized at a time.
Also, query plans which require the materialization of all attributes without specifying
the names can not be instantiated with this operator.

Ship Where Needed Equijoin on Integer Data Similar to ParallelQgramJoin, which
processes exact and similarity string joins, integer equijoins can be optimized. Instead
of the AV similarity index the AV index must be accessed. Therefore, it is not possible
to use QgramExtract internally, an operator similar to Extract would have to be used
instead.

88

8 Implementation

This chapter documents the CouPé implementation. The basic architecture of the query
processor has already been described in sec. 5.2. UML class diagrams will be used
here for a more detailed view of the query planner, operators and execution engine.
For each class, a short description will be provided. Furthermore, the integration of
the query processor into the basic P-Grid P2P software and the statistics collector is
documented. Note that the diagrams do not contain all existing relationships between
the classes, only the relevant information is presented. Class and method names in the
description are printed in monospace.

8.1 Implementation Details

True to the P2P approach, the implementation is present on all peers in the same form.
Every peer accepts queries in VQL and can also process already running queries which
get routed to it. The P-Grid source code is written in Java. The query processor is also
implemented in Java and directly interfaces with P-Grid at the source level.

8.2 Query Planner

Fig. 8.1 gives an overview of the query planner, the classes will be reviewed in the
following.

PlanWrapper Contains the query plan and associated information. Only the root opera-
tor is stored, but as each operator links to its children, the entire plan is referenced this
way.

89

8 Implementation

LogicalOperator

#mType: String
#mParams: List<String>
#mLeftChild, mRightChild:
 LogicalOperator

OperatorSeq

#mFirstOp: LogicalOperator
#mLastOp: LogicalOperator

MaterializationParams

#mOIDVar: String
#mAtts: List<String>
#mSelectAll: boolean

RankingParams

#mRankingFunctions:
 List<RFunctions>
#mLimit: int
#mOffset: int

PhysicalOperator

#mTupleData: List<JTuple>
+process(..)

BasicPlanner

OptOIDMaterializePlanner

ParallelRankingPlanner

QueryPlanner

+instantiateLogicalOp(PlanWrapper, LogicalOperator)
+instantiateQueryPlan(PlanWrapper, LogicalOperator)
#rewriteOperator(PlanWrapper, LogicalOperator): OperatorSeq
+ Helper methods

VQLVar

+isObjectContext()
+isAttContext()
+isValueContext()

root operator of plan
PlanWrapper

Figure 8.1: Query planner and related classes

90

8 Implementation

LogicalOperator This class holds the information received from the VQL parser for
every operator.

PhysicalOperator This is the base class for implementations of operators, and thus
able to store jtuple data as required by the M2QP concept. An abstract process()
method is defined as well.

QueryPlanner Defines the basic interface for query planning. instantiateLogicalOp()
replaces the specified LogicalOperator in the PlanWrapper with an implementation
as determined by rewriteOperator(), which must be implemented by subclasses.
instantiateQueryPlan() simply calls the former method for every operator in the
plan.

OperatorSeq This helper class wraps a chain of linked operators in a class, used as the
return type for QueryPlanner.rewriteOperator(), and makes it possible to replace n
logical with m physical operators.

BasicPlanner This is the basic planner implementation described in sec. 7.4. It defines
a mapping for every available logical operator.

ParallelRankingPlanner, OptOIDMaterializePlanner In contrast, only a mapping
for Ranking /Materialization is defined here.

RankingParams, MaterializationParams Helper classes which parse VQL parameter
strings for Ranking and Materialization, respectively, and provide get()-ter methods.
This way, the functionality must only be implemented in one place and can be used by
different planners.

VQLVar This is another helper class which parses the VQL variable notation and pro-
vides methods for often needed operations. It is used in many operators.

8.3 Operators

Fig. 8.2 shows some of the operator implementations available in CouPé and associ-
ated classes. One goal of the implementation was to avoid code duplication, so inher-
itance from other operators has been used where possible. All operators using it are
depicted. PhysicalOperator is the base class of all operators and can store a list of

91

8 Implementation

QGramExtract

ParallelQGramExtract

LocalSel

ParallelJoin

#mRankingPeer: String

LocalJoinLocalRanking

ParallelRanking

#mRankingPeer: String ParallelQGramJoin2

ParallelQGramJoin

Extract

ParallelOIDMaterialize

OptOIDMaterialize

OIDMaterialize

Projection

PhysicalOperator

#mTupleData: List<JTuple>
+process(..)

JTuple

Tuple

Triple

ResultProvider

+getResults(): List<ResultRow>
+getNumRows()

LogicalOperator

#mLeftChild, mRightChild: LogicalOperator

ComparatorException

Comparator

+evaluate(Object left, Object right,
 String operation, double dist): boolean OperatorException

QPException

Figure 8.2: Operators and related classes

92

8 Implementation

JTuples, equivalent to the data structure introduced in sec. 4.2.2. Each one stores
multiple Tuple objects. Other relevant classes are:

Triple This special case of a Tuple is used in the ExecutionEngine and especially the
operators.

ResultProvider This interface is implemented by operators which transform the data
from the JTuple format to the final result – a table form with a column for every variable
present in the SELECT statement. Projection is at the top of every plan created by
the query planners, so it implements this interface. The ExecutionEngine at the query
initiator can extract the results using the methods shown.

Comparator All comparison operations (<, >, ≤, ≥, =, 6= and ∼) are performed in this
class. It can handle Java String, Integer and Float data types, but only the first two
were used for this work.

QPException, OperatorException, ComparatorException The exception hierarchy
of CouPé.

8.4 Execution Engine

Fig. 8.3 shows the key component of the query processor, the ExecutionEngine. Im-
portant members of this class are:

mOnlineData The data for online processing operators (currently only ParallelRanking)
is stored here if the peer is the synchronization peer. The map is indexed by the GUID1

of the operator.

mParallelJoinData Similar to the previous structure, temporary data for parallel join
processing is stored here.

mQueryResults Results of queries are collected here. QueryResult stores all relevant
information for one query, including the ResultProvider (implemented by Projection)
which holds the results and allows merging of two result query plans. The map is
indexed by query ID (a GUID).

1globally unique identifier, this concrete implementation is part of P-Grid

93

8 Implementation

send plans,
status

messages

^ forward result plans,
messages to

initiator engine

ProcessWrapper

#mPW: PlanWrapper
#mQueryID: GUID
#mInitiator: PGridHost

QueryResult

#mRP: ResultProvider
#mRL: ResultListener
#mRevision: int
+update(..)

ExecutionEngine

#mOnlineData:
 TimeoutMap<GUID, List<JTuple»
#mParallelJoinData:
 TimeoutMap<GUID, ParallelJoinData>
#mQueryResults: TimeoutMap<GUID, QueryResult>
#mQueryStats: Map<GUID, QueryStatistics>
#mQueue: List<ProcessWrapper>
+processQuery(PlanWrapper, ResultListener): GUID
+newSearchResult(GUID, Collection)
#doProcess(..)

^ indirect call

^ forward plan
to engine

MessageManagerSearchManager

QueryIDWaiter

ResultListener

+updatedResults(GUID queryID, ResultProvider, int revision)
+updatedStatistics(..)
+searchFailed(GUID queryID, String reason)
+searchFinished(GUID queryID)

SearchListener

+newSearchResult(GUID, Collection)
+searchFinished(GUID)
+searchFailed(GUID)

RemoteSearchHandler

TripleTypeHandler

P-Grid
messaging
layer

The main class

Insert data, start up
P-Grid and run queries

ResultProvider

+getResults(): List<ResultRow>
+getNumRows(): int

TimeoutThread

#mMaps: List<TimeoutMap>

Runnable

PlanWrapper

SingleQueryTester

TimeoutMap

Figure 8.3: Execution engine and associated classes

94

8 Implementation

mQueryStats Statistics for queries are aggregated, again indexed by the ID of the
query.

processQuery() Applications call this method to start a new query. The query plan and
a ResultListener callback must be provided. The query ID which is returned is used
to identify the query in the callback methods.

doProcess() This is the main method and implements the algorithm presented in fig. 6.3.
For sending query plans to other peers, the messaging layer of P-Grid is used (classes
SearchManager and MessageManager). Results and status messages (searchFailed(),
searchFinished()) are sent via RemoteSearchHandler, which is also responsible for
forwarding incoming messages as received from the MessageManager to the Triple-
TypeHandler, which in turn passes them to the ExecutionEngine. The original imple-
mentation of this class is from the P-Grid codebase, but had to be changed to handle
the new messages used for the transport of the query plans.

ResultListener is the callback interface to the application used to signal updated re-
sults, statistics and query status.

mQueue Query plans to be processed are queued up here. This includes both locally
started queries and those received from other peers for further processing. A thread
fetches queries and executes them asynchronously by calling doProcess().

ProcessWrapper is a helper class for the processing queue and holds information about
the queries scheduled for processing.

QueryIDWaiter A callback used on the query initiator to receive query results, status
messages and heartbeats pertaining to a specific query ID. The messages are signalled
to the ExecutionEngine by the P-Grid SearchListener interface, which is implemented
by the ExecutionEngine.

TimeoutMap, TimeoutThread Many map data structures in the engine are backed by
a TimeoutMap which discards entries after a period without get() or put() access,
freeing resources of queries which have failed or will not provide any more results.

SingleQueryTester is used for the tests in sec. 9. All parameters, including P-Grid
settings like replication factor, bootstrap hosts and running time are configured here.
It starts up P-Grid on the peer, inserts the specified data and joins the network. A
command line interface is available for starting queries and fine-tuning all aspects of
the ExecutionEngine. It is also possible to run the tester in the background and send
commands to a fifo file. This makes it possible to run tests from one master host which

95

8 Implementation

sends commands to many different peers running the tester with minimal manual inter-
vention. SingleQueryTester implements the ResultListener which will be called from
the ExecutionEngine for the queries started on that peer.

8.5 P-Grid Integration

ExecutionEngine

QueryPlanner
PlanWrapper

#mRoot: LogicalOperator
#mQueryStr: String
#mPlanner: QueryPlanner
#mQueryID: GUID
#mRevision: int
#mStatistics: QueryPlanStatistics
#mOperatorHB: boolean
#mPeerHB: boolean

RemoteSearchHandler

QueryStatistics

QueryPlanStatistics

HeartbeatMessageQueryPlanMessage

Serializer

+decode(String): Object
+encode(Object): String

PGridMessageImp

Query RangeQuery

RangeQueryPlanQueryPlan

RangeQueryPlanMessage

Heartbeat

LogicalOperator

Figure 8.4: Implemented messages and P-Grid base classes

During development of CouPé, three different P-Grid versions were released. The in-
tegration with the latest is documented in fig. 8.4. Implemented messages and P-Grid

96

8 Implementation

classes are highlighted (yellow and orange, respectively). P-Grid messages are XML
data which are compressed for transmission. Therefore, data must be transformed
to an appropriate string serialization. For the nested structures encountered in query
plans this can be cumbersome. Also, due to the nature of a research project, no ex-
act requirements were known, leading to constant change. It is very time-consuming
to alter the message each time data structures change. Therefore, the PlanWrapper
was designed as a class to hold all relevant data for a query. This single object is
serialized to a byte stream, encoded as Base64 and included in the XML message.
This process is implemented by the Serializer. For this to work, all classes con-
tained in the PlanWrapper must implement the Java Serializable interface, but as it
is an empty interface, this is only a declaration. P-Grid already offers the basic classes
QueryMessage and RangeQueryMessage. They encapsulate an Query and RangeQuery
object, respectively, which contains all relevant information stored in the message, and
construct the XML representation from that. The query processor implements two
new messages, QueryPlanMessage and RangeQueryPlanMessage, in the same way:
QueryPlan and RangeQueryPlan are subclasses of the P-Grid containers and both ag-
gregate one PlanWrapper object to hold the additional query plan information. The
same code for message construction is used with the addition of a new tag for the
encoded PlanWrapper data.

For the heartbeat message, only a single string was used as payload, so no PlanWrapper
is used in this case. The string is simply attached to the message with an additional
XML tag.

In fig. 8.4, the PlanWrapper is displayed in detail. As shown previously, it contains the
reference to the root plan operator (and therefore to the complete plan). mQueryStr is
the original VQL query, mOperatorHB and mPeerHB control the sending of heartbeats
on a per-plan basis. mPlanner can refer to any planner implementation and will be used
during processing if the plan contains logical operators. An important part of each query
are the statistics, which are essential for a thorough evaluation. They are collected and
updated during processing of the query in QueryPlanStatistics objects and main-
tained in the plan. This is performed in RemoteSearchHandler and ExecutionEngine,
as all messages will pass through these classes. QueryStatistics aggregates all
statistics for one query provided by multiple result plans on the initiator. Some of the
statistics collected are the number of hops and messages for a plan and the bandwidth
used. They will be used for the evaluation of the query processor in sec. 9. The statistic
component was implemented by Marcel Karnstedt.

97

8 Implementation

UML diagram Source Code

ExecutionEngine QueryProcessor

QueryPlanner PlanRewriter

BasicPlanner SimplePlanRewriter

JTuple NamespaceTuple

RankingParams PhiParams

MaterializationParams OmegaParams

mOidVar mNamespace

Table 8.1: Differing variable and class names in
the source code

8.6 Implementation Class and Variable Names

Some of the names used in the UML diagram and the rest of this work differ from the
ones used in the source code. This was done for better understanding and consistency.
The changes are documented in table 8.1.

98

9 Evaluation

This chapter analyzes the tests that were performed to evaluate the query processor.
First, the key questions to be answered by this chapter are put forward. The test setup
and the captured statistics are documented, followed by a discussion of each test. The
last section summarizes the most important findings.

9.1 Introduction

The key questions to be answered by the evaluation are:

1. Is query processing in a DHT feasible?

• Is the quality of search results acceptable?

2. Does the query processor scale gracefully?

3. How do different operator implementations compare against eachother? Which
should be used in a given situation?

First, rudimentary tests in a LAN with up to 35 peers were performed, which were
successful. In the second step, CouPé was deployed on PlanetLab [CCR+03].

9.1.1 PlanetLab

PlanetLab is a global research network consisting of more than 700 nodes worldwide
located at universities and research institutions. The idea is that participants contribute
a few nodes at their site and are granted the privilege to run tests on all nodes in
the network in turn. This makes it possible to deploy and test large-scale distributed
services without a prohibitively high initial investment. PlanetLab provides an ideal
environment for testing CouPé in a WAN setting. It is also a challenging environment

99

9 Evaluation

where peer failures are to be expected and few guarantees can be made about the
available resources on a node. Therefore, it also provides insight whether CouPé is
able to function in such adverse situations.

Initial tests on PlanetLab were performed with up to 100 peers and remaining problems
identified and removed. For example, in a WAN, the transmission of messages can
take longer due to low bandwidth links and high latency. This led to timeouts and
frequent retransmissions which were fixed by increasing P-Grid’s internal timeouts and
implementing additional message queues. The limited resources caused by the many
experiments running in parallel on each node had also to be taken into account.

9.2 Test Setup

A set of 119 test queries were created to test the various operators. Four different P-
Grid nets were constructed from scratch, consisting of 30, 60, 90 and 120 peers. Each
peer inserted 5 out of 600 total tuples, so the smallest net contained 150, the largest
600 tuples. This way, the total data in the net grows, but the data each peer must keep
in its data store (which is not identical to its inserted data) stays constant. There are
four different schemas for the tuples. They are identical except for the second column,
which stores string data, but has different names: for 300 tuples it is na, for the other
300 title, and 16 tuples have been modified in each set to contain a slighty different
name (na and titel), analog to heterogenous schemas from different participants,
which makes it possible to test similarity selections and joins on schema level. The
other columns contain integer data. The tuples inserted by each peer are chosen so
that each net size has an equal percentages of tuples from each schema.

A(nr, na, len, count, date, r) (16 tuples)
B(nr, n, len, count, date, r) (284 tuples)
C(nr, title, len, count, date, r) (284 tuples)
D(nr, titel, len, count, date, r) (16 tuples)

The reason for the relatively low number of tuples per peer is that memory problems on
the PlanetLab nodes prevented larger setups. Later tests revealed that this was caused
by problems in P-Grid which were fixed by an update, but it was not possible to re-run
all tests in time.

100

9 Evaluation

The following indexes (sec. 4.1) were created:

• OID index

• AV index

• AV similarity index (second column)

• Attribute similarity index on columns nr, title/titel/na/n, len, r

Table 9.1 shows the average number of triples generated from these 5 tuples per
peer.

Index Triples/Peer
OID 30
AV 30
AV sim. 55.3
Att. sim. 85.8
Total 201.1

Table 9.1: Average number of triples per peer and index

The queries were executed and statistics gathered in log files. The problems discov-
ered during the first run led to a second run using an updated P-Grid version. Most
of the queries had to be repeated. Statistics from the first run are only used by the
materialization test (sec. 9.4.3), the quality was good here. As expected, some nodes
dropped out of the network while the queries were executed. This was mainly caused
by large memory consumption and Java exceptions, but in the second run much less
problems occured. The most failures occured in the 90 peer net for this run (7 failures,
7.8%). P-Grid’s replication feature was used (replication factor 2), so these moderate
failure rates could be tolerated.

9.3 Statistics

Extensive statistics are collected on a per-query basis (sec. 8.5). They can be parsed
and examined with LogAnalyzer, a tool implemented for that purpose by Marcel Karn-
stedt. Some of the collected statistics, which will be used for analysis in the remainder
of this chapter, are:

101

9 Evaluation

Query Plan Hops The number of times a query plan was routed by the query processor
in succession. For parallelized plans, the maximum over all instances is used.
This gives a good indication of the total time needed to process the query, as the
dominating factor for this is the transmission of messages between peers. For
example, when the first processed operator in a plan is ParallelExtract and
routed to three peers in parallel, this is counted as one hop (and 3 query plan
messages, see below). Assuming one of the plans is routed 3 more times before
returning results and the other two one more time, the hop count for the query is
1 + 3 = 4. The number of query plan messages is 4 + 2 + 2 = 8.

Query Plan Messages The number of times a plan was routed by the processor. For
parallel plans, the sum over all instances is calculated. This is a key statistic for
analyzing the message load in the network.

P-Grid Messages The number of times a query plan was transmitted between two
peers as result of a routing request from the processor. Query plans are routed
to P-Grid paths, but each route can consist of multiple hops in the underlying
network, which are counted here.

P-Grid Hops Similar to query plan hops this records the maximum number of hops for
all concurrently routed plans on the level of the underlying (IP) network.

Bandwidth The bandwidth required for routing of the compressed plan(s) during pro-
cessing, including message headers, but excluding the result plans.

Reply Bandwidth The bandwidth required for sending the compressed result plan(s)
to the initiator.

For even more detailed analysis, logical and physical versions of most of these statistics
are kept. When a plan is scheduled for routing but P-Grid detects that it can be handled
on the local peer this is counted as a logical hop and message only. Physical statistics
are used for analysis in most cases so that the advantages of operators (i.e., better
routing) become visible. This requires repetition of queries and averaging of statistics,
so random effects can be reduced. During the first run, each query was repeated
3 times, during the second 5 times. To prevent overlap in query execution, waiting
periods were used in between. Because of this, the number of repetitions could not be
set higher.

102

9 Evaluation

9.4 Tests

9.4.1 P-Grid Network

First, basic P-Grid statistics will be presented. Fig. 9.1 shows the average and maxi-
mum path lengths for the four net sizes. Both show moderate growth. The maximum
path size does not exhibit any extremes, which implies that the virtual P-Grid tree is not
heavily skewed.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 120 90 60 30

P
at

h
le

ng
th

Peers

avg
max

Figure 9.1: Average and maximum P-Grid path lengths

An important characteristic of a DHT is the number of hops required to retrieve a key
(“lookup”). Less hops imply less waiting time. P-Grid guarantees logarithmic costs w.r.t.
the number of key space partitions, and fig. 9.2 shows that this is the case in practice.

9.4.2 Extraction

The VQL query SELECT c WHERE { <x;’n’;c> } was used to compare the two
Extraction implementations Extract and ParallelExtract. The resulting query plans
contain an additional Projection operator at the root. Attribute n was chosen because
it hashes to a relatively short P-Grid key, so its AV index is stored on more than one

103

9 Evaluation

 1

 1.5

 2

 2.5

 3

 120 90 60 30

P
-G

rid
 h

op
s

Peers

hops

Figure 9.2: P-Grid hops for key lookup

peer with high probability which emphasizes the differences between the two imple-
mentations.

Fig. 9.3 shows that both plans require a similar number of P-Grid messages to re-
trieve all data. Linear growth can be observed, as the number of AV index peers also
increases with net size. The plot for P-Grid hops (fig. 9.4) shows the key difference
between the operators: while Extract requires as many hops as messages because
it contacts the peers in sequence, P-Grid’s prefix queries speed up ParallelExtract
considerably.

9.4.3 Materialization

Four different Materialization operators exist: OIDMaterialize, OptOIDMaterialize,
ParallelAVMaterialize and ParallelOIDMaterialize. To compare them, the query
plan depicted in fig. 9.5 was constructed. The Extract operator is in the DONE state
and contains 5 triples1, chosen randomly from all inserted triples of the len attribute.
They will be extended by two further attributes by Materialization. Fig. 9.6 shows the
physical query plan hops for each operator. OIDMaterialize routes the plan for each

1or more generally, jtuples

104

9 Evaluation

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 120 90 60 30

P
-G

rid
 m

es
sa

ge
s

Peers

Extract
ParallelExtract

Figure 9.3: Extraction: P-Grid messages

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 120 90 60 30

P
-G

rid
 h

op
s

Peers

Extract
ParallelExtract

Figure 9.4: Extraction: P-Grid hops

105

9 Evaluation

jtuple, so the expected hop number is 5. As the physical hop number is plotted, which
does not increase the hop count when the plan can be processed on the local peer, this
number is below 5 for two of the nets. As expected, OptOIDMaterialize performs better
except for one net. ParallelAVMaterialize requires a constant two hops. Because
it can process only one attribute, two instances of the operator are used in succession
for this query and each requires one query plan hop to reach the peers storing the
corresponding AV index. ParallelOIDMaterialize generates and routes a plan for
each jtuple simultaneously, so it also requires one hop. Because the OID index is used,
the number of attributes to be materialized is not relevant. For OIDMaterialize and
OptOIDMaterialize, a slight rise in the number of hops can be seen for increasing net
size. This is because the average path length grows while the length of the requested
keys stays constant, so the probability that the local peer does not store the requested
key increases. With increasing net size the query plan hops required will converge
towards the number of jtuples in the plan and can be predicted precisely.

Materialization

Projection

Extract

STATE: DONE

<45; ’len’; 15>

<20; ’len’; 3>

<471; ’len’; 3122>

<7; ’len’; 71>

<65; ’len’; 78091>

Figure 9.5: Materialization: query plan

Fig. 9.7 shows the transmitted query plan messages for each operator and highlights
the difference between the three OID index operators and ParallelAVMaterialize.
The number of messages routed in parallel by ParallelOIDMaterialize are similar to
the other OID operators. The ParallelAVMaterialize plan requires a constant two
messages, and analysis of the logs show that the AV indexes for the materialized at-
tributes were both stored on one peer only, so one message for each was sufficient
to route the plan. This distribution puts the operator at an advantage, and more tests
should be performed to analyze the properties for distributed AV indexes in more de-
tail.

106

9 Evaluation

 0

 1

 2

 3

 4

 5

 6

 7

 120 90 60 30

Q
ue

ry
 p

la
n

ho
ps

 (
ph

ys
ic

al
)

Peers

OID
OptOID

ParallelAV
ParallelOID

Figure 9.6: Materialization: query plan hops

 0

 1

 2

 3

 4

 5

 6

 7

 120 90 60 30

Q
ue

ry
 p

la
n

m
es

sa
ge

s
(p

hy
si

ca
l)

Peers

OID
OptOID

ParallelAV
ParallelOID

Figure 9.7: Materialization: query plan messages

107

9 Evaluation

Bandwidth consumption during processing is shown in fig. 9.8 and correlates with the
number of messages. ParallelAVMaterialize comes out on top, as it only needs
to ship the plan two times. The first time it contains the 5 jtuples to be materialized,
the second time also the first materialized attribute. Between the three OID operators
ParallelOIDMaterialize performs best. It only ships the plan with one of the 5 jtuples
stored in the Extract operator 5 times, while the other two have to transmit all 5 jtu-
ples along with the accumulating materialization results. An improvement would be the
implementation of a consumer interface instead of the current cursor model used for
iterating over jtuples stored in child operators, which would reduce the size of the plan
when operators only need to access the data once. OptOIDMaterialize yields very
different results for the net sizes. This is most likely caused by the low number of repeti-
tions (3) used for the averages in conjunction with the mode of operation. For example,
when 4 out of the 5 jtuples in the plan can be materialized on one peer, it is much more
efficient to materialize the single tuple first, so less data will have to be transmitted to the
peer where plan execution can be completed. This optimization should be implemented
in the operator.

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 120 90 60 30

B
an

dw
id

th
 (

ph
ys

ic
al

)
[b

yt
es

]

Peers

OID
OptOID

ParallelAV
ParallelOID

Figure 9.8: Materialization: query plan bandwidth

Because ParallelOIDMaterialize must send 5 result plans to the initiator, it has the
highest reply bandwidth consumption (fig. 9.9) – it grows linearly with the number of
jtuples to be materialized. The peak for the smallest net corresponds to the peak num-
ber of messages sent as seen in fig. 9.7. When the initiator cannot process one of the
plans generated by the operator it routes it, causing an additonal physical message and

108

9 Evaluation

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 120 90 60 30

R
ep

ly
 b

an
dw

id
th

 (
ph

ys
ic

al
)

[b
yt

es
]

Peers

OID
OptOID

ParallelAV
ParallelOID

Figure 9.9: Materialization: reply bandwidth

Plan Attributes
1 att. count
2 att. count, nr
4 att. count, nr, date, r

Table 9.2: Materialization attributes

also an additional reply message, which would otherwise be logical only. It is assumed
that the low number of repetitions combined with a disadvantageous sample of initiator
peers caused this skew. The other three operators only ship one plan of the same size
to the initiator2. Replies in P-Grid are sent over a direct connection to the initiator at IP
level, so no additional hops are required, which can be seen by the constant bandwidth
consumption for increasing net size.

Further tests where done materializing 1 and 4 attributes (table 9.2). The OID index
operators are hardly affected by this, but it is interesting how ParallelAVMaterialize
handles the situation, as each attribute must be processed by a separate operator.
Fig. 9.10 shows the bandwidth consumption, including ParallelOIDMaterialize on 4

2this would have been different had the AV index of the two attributes been stored on more than one peer
each

109

9 Evaluation

 0

 50000

 100000

 150000

 200000

 250000

 120 90 60 30

B
an

dw
id

th
 (

ph
ys

ic
al

)
[b

yt
es

]

Peers

ParallelAV, 1 att.
ParallelAV, 2 att.
ParallelAV, 4 att.

ParallelOID, 4 att.

Figure 9.10: Materialization: different number of attributes

 4

 6

 8

 10

 12

 14

 16

 18

 20

 120 90 60 30

A
V

 in
de

x
pe

er
s

Peers

att. r

Figure 9.11: Materialization: AV index peers, att. r

110

9 Evaluation

attributes for comparison. Only one of the four attributes, r, has an AV index spanning
multiple peers. It is only materialized in one query and leads to a dramatic increase in
bandwidth, because the plan must be multicasted to all AV index peers. The number
of peers for the attribute is plotted in fig. 9.11, and except for the smallest net size
they show correlation with the bandwidth plot (log file analysis did not show any reason
for the anomaly). The plot also shows the overhead of ParallelAVMaterialize as
pointed out in sec. 6.4.1: Although only 5 jtuples need to be materialized, the complete
plan must be sent to every AV index peer, even though there are more than 5 for all net
sizes, so some of them will not contribute any results.

These materialization tests show that three key parameters should be considered by an
optimizer to determine the best operator for a given query:

• number of attributes

• number of jtuples

• number of peers storing the AV indexes

9.4.4 Similarity Selection

Similarity selection on strings is a key feature of CouPé. The following VQL query was
used for evaluation:

SELECT v WHERE { <x;’n’;v> FILTER v ∼ ’prize the’, 4 }

It is rewritten to the query plan shown in fig. 9.12, and for Extractionn , one of these
physical operators is used: Extract, ParallelExtract, QgramExtract, Parallel−
QgramExtract. The first two simply access the AV index of attribute n and extract all
data. The serial plan is at a slight disadvantage here, as it cannot filter until all data
has been extracted, while the parallel version can process LocalSelection on each
index peer in parallel and does not have to ship accumulating Extract results from
peer to peer. The q-gram operators need to look up 5 non-overlapping q-grams in the
AV similarity index to answer a query with distance 4. Because the search string is
too short for this, all overlapping q-grams (11) are generated instead. After hashing, 9
distinct P-Grid keys remain which are used for routing. The query selects 4% of the n
column.

111

9 Evaluation

LocalSelection

Extractionn

Projection

Figure 9.12: Similarity selection query plan

 0

 2

 4

 6

 8

 10

 12

 14

 120 90 60 30

Q
ue

ry
 p

la
n

ho
ps

 (
ph

ys
ic

al
)

Peers

Extract
ParallelExtract

ParallelQgramExtract
QgramExtract

Figure 9.13: Similarity selection: query plan hops

112

9 Evaluation

Query plan hops taken are depicted in fig. 9.13. As expected, the parallel operators
require one hop. QgramExtract takes fewer than the expected 9 worst-case hops,
because physical hops are plotted. With growing net size this number slightly increases,
as the probability that a q-gram lookup can be answered without routing becomes lower
(sec. 9.4.3). Extract clearly suffers from the number of AV index peers (proportional to
net size), because it has to fetch all the data of the attribute regardless of the queried
distance.

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 120 90 60 30

B
an

dw
id

th
 (

ph
ys

ic
al

)
[b

yt
es

]

Peers

Extract
ParallelExtract

ParallelQgramExtract
QgramExtract

Figure 9.14: Similarity selection: bandwidth

Fig. 9.14 plots the bandwidth consumed by the plans. QgramExtract performs better
than the parallel version even though it accumulates the temporary results in the query
plan during routing. One reason is that ParallelQgramExtract has to ship a mes-
sage for each of the distinct q-gram keys, even if they are stored on the same peer.
QgramExtract only routes the plan once to such peers. The overhead of many mes-
sages is noticable because the result set is relatively small. For a bigger edit distance,
QgramExtract would have to ship more intermediate results between peers and would
perform worse. ParallelExtract only ships the query plan without any intermediate
results to all peers storing the AV index. As the net size increases, more peers must
be contacted and bandwidth consumption grows linearly. Extract shows exponential
growth because the intermediate data and the number of hosts routed to in sequence
both increase with net size.

113

9 Evaluation

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 120 90 60 30

R
ep

ly
 b

an
dw

id
th

 (
ph

ys
ic

al
)

[b
yt

es
]

Peers

Extract
ParallelExtract

ParallelQgramExtract
QgramExtract

Figure 9.15: Similarity selection: reply bandwidth

Again, the serial operators perform best when it comes to reply bandwidth, as all results
are contained in a single plan (fig. 9.15). Although the larger nets contain more matches
this is not noticable, as plan overhead dominates the relatively small result sets, and
the consumed bandwidth nearly stays constant. ParallelQgramExtract performance
correlates with the constant number of parallel plans (one for every distinct q-gram key).
As the number of AV index peers increases, the reply bandwidth for ParallelExtract
grows linearly. The relatively small result payload is clearly dominated by the overhead
of the query plan and P-Grid message data.

Important parameters for consideration by a future optimizer for similarity selection
are:

• distance

• number of AV index peers

• selectivity

Extract is outperformed by QgramExtract in most cases and is only useful if no q-gram
indexes can be created. Depending on the requirements, QgramExtract (low reply
bandwidth) or one of the parallel operators (low latency) should be used. In the second
case, ParallelQgramExtract is a good fit for small distances while ParallelExtract
performs good for few AV index peers.

114

9 Evaluation

9.4.5 Similarity Join

The following VQL query was used for evaluation of similarity joins on string data:

SELECT xn,yn WHERE { <x;’titel’;xn> <y;’n’;yn> FILTER xn∼yn, 3}

Five different physical plans were tested:

1. ParallelExtract operators fetch the data and the join is processed in parallel on
the peers storing the AV index of the right-side attribute n (fig. 9.16).

2. The left side is processed by Extract, the right by ParallelQgramJoin (sec. 7.3.2).
Because the left-side attribute titel contains relatively few tuples, this ship-
where-needed-approach becomes interesting (fig. 9.17).

3. Like (2), but on the left side, ParallelExtract is used. This parallelizes pro-
cessing at this stage and also for ParallelQgramJoin, which can generate plan
cloning messages on multiple peers in parallel and thus balance this load.

4. Like (2), but using ParallelQgramJoin2 on the right.

5. Like (3), but using ParallelQgramJoin2 on the right.

LocalJoinxn~yn

P.Extract’titel’ P.Extract’n’

Projection

Figure 9.16: Similarity join: ParallelExtract

Table 9.3 summarizes the operators on the left and right side of the join for each vari-
ant and the planners used. The rest of the plan (i.e., LocalJoin and Projection) is
identical. The query result size is approximately 2% in relation to the total number of
tuples (for the smallest net with 150 tuples, 3 results are generated). Fig. 9.18 depicts
the bandwidth. Plans 2/3 and 4/5 perform very similarly. Analysis of the log files shows
that the AV index for attribute titel was only stored on one peer in each net, so the
expected worse performance for the serial versions (2 and 4) does not become visible.

115

9 Evaluation

LocalJoinxn~yn

Extract’titel’ P.QgramJoin’n’

Projection

Figure 9.17: Similarity join: ParallelQgramJoin

Plan Left Right Planners used
1 ParallelExtract ParallelExtract P.Extract, Basic
2 Extract ParallelQgramJoin P.QgramJoin, Basic
3 ParallelExtract ParallelQgramJoin P.Extract, P.QgramJoin, Basic
4 Extract ParallelQgramJoin2 P.QgramJoin2, Basic
5 ParallelExtract ParallelQgramJoin2 P.Extract, P.QgramJoin2, Basic

Table 9.3: Similarity join: Tested query plans

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 120 90 60 30

B
an

dw
id

th
 (

ph
ys

ic
al

)
[b

yt
es

]

Peers

1 (P.Extract, P.Extract)
2 (Extract, P.QgramJoin)

3 (P.Extract, P.QgramJoin)
4 (Extract, P.QgramJoin2)

5 (P.Extract, P.QgramJoin2)

Figure 9.18: Similarity join: bandwidth

116

9 Evaluation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 120 90 60 30

B
an

dw
id

th
 (

ph
ys

ic
al

)
[K

by
te

s]

Peers

dist. 2
dist. 3
dist. 5

Figure 9.19: Similarity join: bandwidth for different edit distances

Plans 1, 4 and 5 show linear performance and thus scale with the result size. The serial
q-gram operators used internally by plans 2 and 3 do not seem to scale very well. As
they are routed to all the q-gram keys in sequence, the results in the plan accumulate
and lead to exponential bandwidth consumption. This is further illustrated in fig. 9.19,
which compares the second physical plan for three different distances (2, 3 and 5). With
growing distance, more temporary results accumulate in the plan and must be routed
from peer to peer. Still, plans 4 and 5 require more bandwidth for the net sizes shown in
fig. 9.18, which is caused by the overhead of the higher number of messages generated
by the internally used ParallelQgramExtract operators. Plan 1 performs best: it only
has to ship few tuples from the lone left-side AV index peer to each AV index peer on
the right side, where the results are processed and replied to the initiator without further
routing. No intermediate results are sent around the network.

The difference between the two ParallelQgramJoin operators also becomes clear
when looking at the query plan hops (fig. 9.20). One hop is needed by all plans to
extract the data of the left-side attribute. For plan 1, another is required to route to
the other side. Plans 4 and 5 use ParallelQgramExtract internally which routes q-
grams in parallel, registering one additional query plan hop. Plans 2 and 3 make use
of QgramExtract operators, which route to the q-grams in sequence and need four ad-
ditional hops (for a edit distance of 3, 4 q-grams are generated for each jtuple of the
left side). Because physical hops are plotted, the number is lower than the theoretical

117

9 Evaluation

 0

 1

 2

 3

 4

 5

 6

 120 90 60 30

Peers

1 (P.Extract, P.Extract)
2 (Extract, P.QgramJoin)

3 (P.Extract, P.QgramJoin)
4 (Extract, P.QgramJoin2)

5 (P.Extract, P.QgramJoin2)

Figure 9.20: Similarity join: query plan hops

upper bound in some cases.

As for similarity selection, the operators generating fewer plans require much less re-
ply bandwidth (fig. 9.21). Because of the small result size, much of the bandwidth is
consumed by message overhead.

Overall, plan 1 performs well in most areas. It consumes the least total bandwidth (also
including reply bandwidth) and has low latency. The main reason is the structure of the
data. On the left side, there are relatively few data items. Shipping them to the AV index
peers of the right-side attribute does not require much bandwidth. ParallelQgramJoin
groups identical values from the left side together and generates a QgramExtract query
plan for each (sec. 7.3.2). As the data items are distinct in this case (they are film titles),
many messages must be generated. The operator cannot play to its strengths and the
overhead of each message leads to high bandwidth consumption. When these param-
eters change, the specialized similarity join operators should perform much better.

118

9 Evaluation

 0

 50000

 100000

 150000

 200000

 250000

 120 90 60 30

Peers

1 (P.Extract, P.Extract)
2 (Extract, P.QgramJoin)

3 (P.Extract, P.QgramJoin)
4 (Extract, P.QgramJoin2)

5 (P.Extract, P.QgramJoin2)

Figure 9.21: Similarity join: reply bandwidth

9.4.6 Schema Similarity Queries

Schema similarity queries (selections and joins) were also tested. However, in none of
the runs could good statistics be obtained. The log files identify two of the key problems
for this:

• The same operators as for instance similarity queries were used, but schema
queries produce larger result sets and temporary results in general. They caused
problems for serial operators like QgramExtract, so it was not possible to finish
queries using those operators in the two biggest nets. In a WAN, large plans
are much more likely to cause timeouts and serial operators produce such plans
quickly for schema operations.

• As scalability problems for the serial operators were anticipated, most of the re-
maining plans used prefix query operators to process large amounts of data in a
distributed fashion. While they worked correctly for the instance level tests dis-
cussed above, problems appeared when they were applied to an empty P-Grid
key prefix, which is needed on schema level. Queries located only part of the
results in this case. This is similar to a bug which occured during the tests of the
first run and was fixed with a P-Grid update, so it is expected to be removed in an
upcoming version and the schema tests should be repeated. Such queries also

119

9 Evaluation

worked with earlier P-Grid versions.

9.5 Summary

The tests in this chapter show that complex query processing on top of P-Grid is feasible
and performs well in many areas. Except for the schema similarity queries (sec. 9.4.6),
most results were complete, even though peer failures occured. P-Grid’s replication
and routing layer perform as expected. Operators for the most important operations
were analyzed, including key lookup, Extraction, Materialization, similarity selection
and similarity join. Many physical operators show good scalability properties. Some
implementations are a good fit when low latency is required, others consume few band-
width. There also exist implementations which are not suited for a large-scale environ-
ment because they do not scale well with net size. The gathered information could be
used as groundwork for an (adaptive) optimizer. It was not possible to analyze schema
operations, but this could be addressed by future work.

120

10 Conclusions and Outlook

10.1 Conclusions

The main objectives of this thesis were the development of a distributed query pro-
cessor built on top of P-Grid and its evaluation. The Mutant Query Plan concept was
chosen as the basic model for query execution. The logical operators of the algebra
were implemented. Query planners which build physical query plans from the plans
generated by the VQL parser were created. The execution engine is the main compo-
nent on each peer. It interfaces with the P-Grid messaging layer, receives query plans,
processes the operators in them in the correct order, routes them to other peers and
sends the results back to the initiator. This architecture works well: even without any
central components, queries are processed reliably and correctly.

The original MQP concept is a serial approach and relatively slow, so M2QPs were
introduced. They parallelize plan execution by using prefix queries, plan cloning and
parallel execution of branches of binary operators. This can lead to great speedups,
which was confirmed by the evaluation. Synchronization peers are used for correct
processing of blocking operators for parallelized queries. This is not ideal, as a central
component is not desired in a P2P setting, but an optimal solution for this was not in
the scope of this work. Similarity operators for selection and join were presented and
evaluated. For increased efficiency they make use of special q-gram indexes. Like the
majority of the implemented operators they can process data on schema level.

CouPé was evaluated on up to 120 PlanetLab nodes. The experiments demonstrated
the feasibility of the concept and performance characteristics for some of the imple-
mented operators could be obtained. Except for the schema similarity queries, which
faced several obstacles, most of the queries provided complete results.

P-Grid proves to be a good DHT choice as it offers prefix queries and replication. The
former provide an efficient way to disseminate query plans in parallel to all peers which
need to process them, the latter ensures availability of data in the face of peer failures,
which have to be expected in large-scale WAN settings. The partitioning scheme and

121

10 Conclusions and Outlook

the indexes created make it possible to efficiently execute operators on the data. In
some cases, different indexes can be used to implement a logical operation, which can
be very useful for a future optimizer component.

10.2 Future Research

Many challenging topics for future research remain. Some of them have already been
identified in previous chapters.

Advanced Optimizer Currently it is only possible to manually select different operator
implementations by using the appropriate planner. This should be enhanced: peers
should be able to decide at query processing time which operators are best suited
and use them based on local knowledge (“adaptive query processing”). The execution
engine already supports this, as it can handle plans which still contain logical operators.
Further techniques for local optimizations of MQP-like plans were presented in [PM02a,
PM02b] and discussed in sec. 6.6. Some hints are already provided by the evaluation
of the operators, and a cost model based on P-Grid’s costs for routing of messages
could also be integrated.

Additional Operators A proposal for processing Aggregation/Grouping was made in
sec. 7.6.1. The presented approaches could be implemented and evaluated. These
operations are important for many applications, and processing them in a distributed
setting poses some interesting challenges.

In sec. 7.6.2, additional operators to complement the implemented ones were pre-
sented1. They are relatively easy to implement, and as they can make use of DHT
features like range queries and direct hash key lookups, they can speed up many inter-
esting VQL queries.

Improve Centralized Operators ParallelJoin and ParallelRanking rely on central
peers for synchronization. This does not scale very well in a P2P environment, so
alternative solutions should be implemented and evaluated.

1for example, substring search and optimized equijoins

122

10 Conclusions and Outlook

Further Tests Some areas for future tests are:

• evaluation of parallel join branch execution

• testing with bigger nets

• re-testing of schema similarity queries

• load tests

123

Bibliography

[Abe01] Karl Aberer. P-Grid: A Self-Organizing Access Structure for P2P Informa-
tion Systems. In CoopIS, 2001. 2.1.3, 2.2, 2.2

[ACMD+03] Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta, Zoran Despo-
tovic, Manfred Hauswirth, Magdalena Punceva, and Roman Schmidt.
P-Grid: A Self-Organizing Structured P2P System. SIGMOD Record,
32(3):29–33, 2003. 2.2

[ADHS05a] Karl Aberer, Anwitaman Datta, Manfred Hauswirth, and Roman Schmidt.
Das P-Grid-Overlay-Netzwerk: Von einem einfachen Prinzip zu einem
komplexen System. Datenbank-Spektrum, 5(13):14–23, 2005. 2.2

[ADHS05b] Karl Aberer, Anwitaman Datta, Manfred Hauswirth, and Roman Schmidt.
Indexing Data-Oriented Overlay Networks. In VLDB, pages 685–696,
2005. 2.2

[AH00] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously Adaptive
Query Processing. In SIGMOD Conference, pages 261–272, 2000. 3.1

[Bit07] BitTorrent.org. BitTorrent Protocol Specification. http://www.
bittorrent.org/protocol.html, January 2007. 1.1, 2.1

[CCR+03] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman. PlanetLab: An Overlay Testbed for Broad-Coverage
Services. SIGCOMM Comp. Comm. Rev., 33(3), 2003. 3.4, 9.1

[CF04] Min Cai and Martin R. Frank. RDFPeers: A Scalable Distributed RDF
Repository Based on a Structured Peer-to-Peer Network. In WWW, pages
650–657, 2004. 3.3

[CFCS04] Min Cai, Martin R. Frank, Jinbo Chen, and Pedro A. Szekely. MAAN: A
Multi-Attribute Addressable Network for Grid Information Services. J. Grid
Comput., 2(1):3–14, 2004. 3.3

[Con07] The P-Grid Consortium. P-Grid Website. http://www.p-grid.org, Jan-
uary 2007. 2.2

[DG92] David J. DeWitt and Jim Gray. Parallel Database Systems: The Future

124

http://www.bittorrent.org/protocol.html
http://www.bittorrent.org/protocol.html
http://www.p-grid.org

Bibliography

of High Performance Database Systems. Commun. ACM, 35(6):85–98,
1992. 3

[DHJ+05] Anwitaman Datta, Manfred Hauswirth, Renault John, Roman Schmidt, and
Karl Aberer. Range Queries in Trie-Structured Overlays. In P2P, pages
57–66, 2005. 2.1, 2.2

[GIJ+01] Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas,
S. Muthukrishnan, and Divesh Srivastava. Approximate String Joins in
a Database (Almost) for Free. In VLDB, pages 491–500, 2001. 4.1.2

[HCH+05] Ryan Huebsch, Brent N. Chun, Joseph M. Hellerstein, Boon Thau Loo,
Petros Maniatis, Timothy Roscoe, Scott Shenker, Ion Stoica, and Aydan R.
Yumerefendi. The Architecture of PIER: An Internet-Scale Query Proces-
sor. In CIDR, pages 28–43, 2005. 3.1

[HHL+03] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon Thau Loo,
Scott Shenker, and Ion Stoica. Querying the Internet with PIER. In VLDB,
pages 321–332, 2003. 3.1

[HHW97] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online aggre-
gation. In SIGMOD Conference, pages 171–182, 1997. 6.4.1

[Kos00] Donald Kossmann. The State of the Art in Distributed Query Processing.
ACM Comput. Surv., 32(4):422–469, 2000. 4.2.2, 6.1

[KSHS06a] Marcel Karnstedt, Kai-Uwe Sattler, Manfred Hauswirth, and Roman
Schmidt. Cost-Aware Processing of Similarity Queries in Structured Over-
lays. In P2P, pages 81–89, 2006. 4.2.1

[KSHS06b] Marcel Karnstedt, Kai-Uwe Sattler, Manfred Hauswirth, and Roman
Schmidt. Similarity Queries on Structured Data in Structured Overlays.
In ICDE Workshops, pages 32–37, 2006. 4.1

[KSR+07] Marcel Karnstedt, Kai-Uwe Sattler, Martin Richtarsky, Jessica Müller, Man-
fred Hauswirth, Roman Schmidt, and Renault John. UniStore: Querying
a DHT-based Universal Storage. In ICDE 2007 Demonstrations Program,
2007. To appear. 1.1

[LHH+04] Boon Thau Loo, Joseph M. Hellerstein, Ryan Huebsch, Scott Shenker,
and Ion Stoica. Enhancing P2P File-Sharing with an Internet-Scale Query
Processor. In VLDB, pages 432–443, 2004. 3.1

[MSR02] Libby Miller, Andy Seaborne, and Alberto Reggiori. Three Implementa-
tions of SquishQL, a Simple RDF Query Language. In International Se-
mantic Web Conference, pages 423–435, 2002. 3.3

[NWQ+02] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sin-
tek, Ambjörn Naeve, Mikael Nilsson, Matthias Palmér, and Tore Risch.

125

Bibliography

EDUTELLA: A P2P Networking Infrastructure Based on RDF. In WWW,
pages 604–615, 2002. 2.1.3

[PM02a] Vassilis Papadimos and David Maier. Distributed Queries Without Dis-
tributed State. In WebDB, pages 95–100, 2002. 6.6, 10.2

[PM02b] Vassilis Papadimos and David Maier. Mutant Query Plans. Information &
Software Technology, 44(4):197–206, 2002. 3.4, 6.1, 6.2, 6.6, 10.2

[PS06] E. Prud’hommeaux and A. Seaborne. SPARQL Query Lan-
guage for RDF. W3C Working Draft. http://www.w3.org/TR/2006/
WD-rdf-sparql-query-20061004/, October 2006. 4.2.1

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M. Karp, and Scott
Shenker. A Scalable Content-Addressable Network. In SIGCOMM, pages
161–172, 2001. 2.1.3, 3.1, 3.4

[RGRK04] Sean C. Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz.
Handling Churn in a DHT. In USENIX Annual Technical Conference, pages
127–140, 2004. 3.1

[RHS03] Sylvia Ratnasamy, Joseph M. Hellerstein, and Scott Shenker. Range
Queries over DHTs. Technical Report IRB-TR-03-009, Intel Research,
2003. 3.1

[RM06] John Risson and Tim Moors. Survey of Research Towards Robust Peer-to-
Peer Networks: Search Methods. Computer Networks, 50(17):485–521,
2006. 3

[Rös05] Philipp Rösch. Ein Anfrageprozessor für CAN-basierte P2P-Systeme.
Diploma thesis, 2005. 3.4

[Sat06] Kai-Uwe Sattler. Verteiltes Datenmanagement. Lecture, TU Ilmenau,
2006. 5.1

[Sch06] Stefan Schwalm. Anfragesystem für vertikal organisierte Universalrela-
tionen in P2P-Systemen. Diploma thesis, 2006. 4.2.1, 4.2.2, 4.2.3, 5.2,
6.3

[SHS05] G. Saake, A. Heuer, and K. Sattler. Datenbanken — Implementierung-
stechniken, 2. Auflage. MITP-Verlag, Bonn, Germany, 2005. 2.1, 2.1.3

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications. In SIGCOMM, pages 149–160, 2001. 2.1.3, 3.2

[Sop07] SopCast.com. SopCast Introduction. http://www.sopcast.org/info/
sop.jsp, January 2007. 1.1, 2.1

126

http://www.w3.org/TR/2006/WD-rdf-sparql-query-20061004/
http://www.w3.org/TR/2006/WD-rdf-sparql-query-20061004/
http://www.sopcast.org/info/sop.jsp
http://www.sopcast.org/info/sop.jsp

Bibliography

[TP03] Peter Triantafillou and Theoni Pitoura. Towards a Unifying Framework for
Complex Query Processing over Structured Peer-to-Peer Data Networks.
In DBISP2P, pages 169–183, 2003. 3.2

[Wie06] Mario Wiegandt. Ähnlichkeitsanfragen in P-Grid-basierten P2P-
Systemen. Diploma thesis, 2006. 3.5, 4.1, 4.1.2

[YM98] Clement T. Yu and Weiyi Meng. Principles of Database Query Process-
ing for Advanced Applications. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1998. 6.3.1, 6.4

127

Thesen

1. Im Geschäfts- wie auch im Privatbereich werden immer größere Datenmengen
verarbeitet. Aus diesem Grund nimmt die Bedeutung von leistungsfähigen, verteil-
ten Datenbanken zu.

2. Oft wird nicht die komplette Funktionalität klassischer Datenbanksysteme, wie
z.B. Transaktionen, benötigt. Der Administrationsaufwand und die Kosten solcher
Systeme sind oft zu hoch.

3. Distributed Hash Tables (DHTs) sind massiv skalierbare auf P2P-Technologie
basierende Systeme, die zur Verwaltung großer Datenmengen unter Verwendung
einfacher Zugriffsfunktionen genutzt werden können.

4. DHTs können um komplexere Anfragebearbeitungsmechanismen erweitert wer-
den (“P2P-Datenbank”), ohne die Skalierbarkeit einzubüßen. Dadurch werden
sie für sogenannte Public Data Management-Anwendungen interessant.

5. P-Grid ist eine DHT, die Präfixanfragen und Replikation bietet und eine geeignete
Grundlage für eine P2P-Datenbank bildet.

6. Mutant Query Plans (MQPs) sind geeignet für die Implementierung komplexer
Anfragebearbeitungsmechanismen in P2P-Systemen.

7. M2QPs erweitern das MQP-Konzept und ermöglichen eine flexiblere und beschleunigte
Bearbeitung von Anfragen in P2P-Systemen.

8. Die Praxistauglichkeit des realisierten Query Processors konnte durch Tests auf
PlanetLab mit bis zu 120 Peers unter Beweis gestellt werden.

9. q-gram-Indexe stellen eine geeignete Möglichkeit dar, um Ähnlichkeitsanfragen
auf Strings zu beschleunigen.

10. Die Anfragebearbeitung kann erheblich optimiert werden durch die Implemen-
tierung eines logischen Operators durch verschiedene physische, die verschiedene
Indexe verwenden.

128

Bibliography

Ilmenau, 13. März 2007

Martin Richtarsky

129

Affirmation

Affirmation

Hereby I declare that I have written this thesis by myself without any assistance from
third parties and that I have exclusively used the indicated literature and resources.

Eidesstattliche Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig und ohne Benutzung an-
derer als der angegebenen Literatur und Hilfsmittel angefertigt habe. Alle Stellen, die
wörtlich oder sinngemäß aus Veröffentlichungen entnommen sind, wurden als solche
kenntlich gemacht. Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner an-
deren Prüfungsbehörde vorgelegt und auch nicht veröffentlicht.

Ilmenau, 13. März 2007

Martin Richtarsky

130

	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Outline of Thesis

	2 Introduction to P2P Networks and P-Grid
	2.1 P2P Networks
	2.1.1 Broadcast Networks
	2.1.2 DHT Networks
	2.1.3 Examples

	2.2 The P-Grid Network

	3 Related Work: DHT Query Processing/Databases
	3.1 PIER
	3.2 ``Towards a Unifying Framework for Complex Query Processing over Structured Peer-to-Peer Data Networks''
	3.3 RDFPeers
	3.4 ``A Query Processor for CAN-based P2P Systems''
	3.5 ``Similarity Queries in P-Grid-based P2P Networks''

	4 Foundations
	4.1 Storing Structured Data in a DHT
	4.1.1 Exact-match Indexes
	4.1.2 Similarity Indexes
	4.1.3 Remarks

	4.2 Querying Structured Triple Data
	4.2.1 Vertical Query Language
	4.2.2 VQL Algebra
	4.2.3 Example: Logical Plan and Parameter Representation

	5 CouPé: A Query Processor for UniStore
	5.1 Challenges
	5.2 Overview of Query Processing in UniStore
	5.3 Query Planners

	6 Execution Engine
	6.1 Execution Strategies
	6.2 MQPs in CouPé
	6.3 Serial M2QP Execution
	6.3.1 Forward Processing

	6.4 Parallel M2QP Execution
	6.4.1 Prefix Queries
	6.4.2 Plan Cloning
	6.4.3 Parallel Execution of Binary Operators

	6.5 Query Status and Completion
	6.5.1 Serial Strategy
	6.5.2 Parallel Strategy

	6.6 Summary and Outlook

	7 Operators
	7.1 Overview
	7.2 Local Operators
	7.3 DHT Operators
	7.3.1 Serial Operators
	7.3.2 Parallel Operators

	7.4 Query Planner Operator Mappings
	7.5 Building Custom Query Plans
	7.6 Future Work
	7.6.1 Grouping/Aggregation
	7.6.2 Other New Operators

	8 Implementation
	8.1 Implementation Details
	8.2 Query Planner
	8.3 Operators
	8.4 Execution Engine
	8.5 P-Grid Integration
	8.6 Implementation Class and Variable Names

	9 Evaluation
	9.1 Introduction
	9.1.1 PlanetLab

	9.2 Test Setup
	9.3 Statistics
	9.4 Tests
	9.4.1 P-Grid Network
	9.4.2 Extraction
	9.4.3 Materialization
	9.4.4 Similarity Selection
	9.4.5 Similarity Join
	9.4.6 Schema Similarity Queries

	9.5 Summary

	10 Conclusions and Outlook
	10.1 Conclusions
	10.2 Future Research

	Bibliography
	Theses
	Affirmation/Eidesstattliche Erklärung

